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CHAPTER I. INTRODUCTION 

Foreword 

The body of this thesis is not concerned with standard 

crystallography (i.e., the determination of the molecular 

conformation and the associated bond lengths and angles). 

Instead it is concerned with the extraction of information 

from x-ray data pertaining to the redistribution of electrons 

which occurs upon molecular formation. 

Historical Perspective 

The capability of transforming x-ray data into an 

electron density! function has been recognized since the 

early 1900s. While the potential^/3,4 existed for extracting 

a large amount of information from x-ray data, there were a 

number of difficulties which had to be surmounted before this 

potential could be realized. 

It was initially found that the data resolution and 

quality was very limited. It was determined^ that only the 

grosses features of an observed electron density function 

could be modeled. The model consisted of spherically 

averaged ground-state atoms placed at the nuclear sites in 

the molecule. This type of model has come to be known as the 

promolecule® and is still widely used in standard 

crystallography. Information gained from the use of a 
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promolecule consists mainly of atomic positional and 

vibrational parameters. 

With the advent of neutron diffraction in the early 1950s 

an unexpected shortcoming of the standard crystallographic 

approach was discovered. It was found that, since the 

promolecule represented only the free-atom state, the 

positions were influenced by the bonding and lone pair 

electron density (both of these are large contributors to 

what is known as the deformation density) which was not part 

of the promolecule model. A recent survey? comparing neutron 

results and x-ray results shows discrepancies in the 

magnitude of the interatomic distances of 0.003 to 0.010Â. 

Aside from improving the quality and resolution of the 

data and developing various corrections for systematic 

errors®, two methods were developed which attempt to correct 

for this shortcoming of standard crystallography. One 

involved improvement of the model® to account for the 

deformation density (DD) and the other consisted of an 

improved technique for obtaining the promolecule's 

parameters^®. 

The model improvement consisted of fitting the entire 

observed electron density using a molecular model. This 

approach removes the bias due to the deformation density by 

accounting for it explicitly in the model. The second 

method, on the other hand, still uses the spherical-atom 
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promolecule, but refinement is carried out using only the 

high-order data where the DD does not contribute 

significantly. This technique eliminates bias due to the 

deformation density by effectively eliminating its 

contribution to the data used in the refinement process. The 

second method is called high-accuracy crystallography and its 

results differ from those of standard crystallography's only 

in the accuracy of the promolecules' parameters. 

In addition to obtaining more accurate model parameters 

work has been, and still is being, devoted to obtaining 

information beyond that of positional and vibrational 

parameters. The additional information is gained by analysis 

of the DD or by using parameters from advanced models. 

One methodll of obtaining the DD subtracts the spherical-

atom promolecule from the observed electron density function, 

the result being called the total difference density (TDD). 

The TDD function may be analyzed mathematically^^,13 by 

integrating over various functions of p(r) or by comparing it 

with theoretical calculations^^. 

Advanced models range from promolecules consisting of 

prepared-valence state atoms to the use of molecular models. 

The prepared-atom approaches ig not usually acceptable since 

few atoms in molecules exist in the same ideal state to which 

the prepared atom belongs, thereby introducing experimenter 

bias. The molecular models are either prepared^® or have so 
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many parameters^? that the results are ambiguous. Many of 

the intermediate models suffer from a lack of proper chemical 

interpretation, even though they can model the electron 

density function well. 

Recently it has been asserted^®'that the use of a 

spherical-atom promolecule in calculating the DD is not the 

most appropriate reference density. It has been shown 

theoretically that it is of greater utility to use a 

promolecule consisting of oriented ground-state atoms. 

Subtracting such a model from the observed electron density 

yields a chemical difference density^® (CDD) map which does 

not exhibit artifacts due to the "selection" of a particular 

ground state configuration/orientation by an atom. These 

artifacts have often been misinterpreted in TDD maps as being 

due to some type of energy change which occurs during 

molecular formation. 

Scope of This Research 

This work involves the modeling of experimental data 

using the oriented-atom promolecule. Although this appeared 

feasible theoretically^®'^^, it was not certain whether the 

available x-ray data would be of sufficient quality to 

determine meaningful promolecule parameters. There was also 

a question of whether the internal vibrations of the atoms 

would smear the electron density over space to such an extent 
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that the detailed orbital information obtainable in theory 

could not be realized in practice. 

In order to answer these questions, the mathematical 

formalism had to be developed which could express oriented 

atom electron density in terms of atomic scattering functions 

which would lend themselves to refinement of their 

orientational attributes. Computer software then had to be 

developed before the approach could be tested on several 

molecules. The succeeding chapters describe this work and 

the results obtained. 

The Promolecule 

The promolecule developed in this work consists of atomic 

core electron density functions plus oriented valence 

orbitals. The core orbitals are described by unmodified, 

free-atom, SCF wavefunctions. The valence orbitals are 

based on similar wavefunctions, but they are no longer in 

their free-atom state. In the original development^® the 

valence orbitals were to be in a configuration which was 

composed of a linear combination of the free-atom's ground-

state configurations, a modification of the spherical free-

atom which required virtually no energy change. Thus the 

oriented-orbital carbon atom would consist of some 

combination of P^^+Py^, and Py^+Pg^ (the spherical 

ground-state is one third of their sum). 
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The requirement of no energy change has been relaxed in 

this work. The orbital constraints which are realized are 

that the orbitals remain orthonormal and that the electronic 

occupancies of the orbitals remain within the range [0,2] (as 

suggested by the Pauli principle). While there is no 

mathematical constraints that the atoms do not change their 

energy levels, results described in the succeeding chapters 

show that this constraint is nearly realized for most atoms. 

A shortcoming of the molecular models was that they had 

so many parameters that the results became ambiguous. To 

avoid this the promolecule used here consists of only the 

most basic parameters necessary. In addition this will 

provide a firm foundation upon which future studies may be 

carried out and additional parameters added where necessary. 

It was of considerable interest to be able to apply the 

oriented-atom promolecule concept to datasets which were not 

ideal. The main objective of such a study would not be to 

yield accurate positional and vibrational parameters, but 

rather to ascertain meaningful orbital information. This 

would permit one to study, and obtain valuable information 

from, a much larger set of molecules for which extensive 

datasets have not been collected. For this purpose a number 

of tests were carried out on the dataset for the 1,2,3-

triazine molecule, the results of which are given in Chapter 

III. 
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CHAPTER II. EQUATIONS 

Introduction 

The standard crystallographic practice of using spherical 

atoms in promolecule models allows for approximations^^ which 

simplify the mathematics involved in such a way as to yield a 

few simple equations to describe the scattering of x-rays 

from atoms in a crystalline solid. However, the use of a 

superimposition-of-oriented-atoms promolecule model requires 

that the complete equations be used without these 

simplifications. Much of the mathematics needed for this 

approach is developed here and is based on the work of 

RuedenbergZl. Equations given later in this chapter pertain 

to the analysis and interpretation of the results. 

While there are numerous equations which represent 

various corrections to the promolecule model, they lie 

outside the scope of this research. The approach taken here, 

as described in Chapter I, is to limit the number of 

parameters involved to the most basic thus producing a firm 

foundation for future work in which the correctness of the 

various additional parameters may be investigated. 

Atomic Electron Density Functions 

and Their Fourier Transforms 

The Fourier transform of the electron density of a 

crystalline solid is given by 



www.manaraa.com

8 

F(k)-JdV p( r )  e x p ( i k T )  (II.1) 

where r-E^ k-2n hia*!, and the integration is over 

the crystallographic unit cell, a^ and a*i are the real and 

reciprocal space lattice parameters and have the 

relationships a^i'^j'^ij for i-1,2,3. 

By considering the electron density contribution from a 

finite set of origins, the structure factor (F(k)} can be 

rewritten as 

P(k)-Ea fa(k) expiik-rg) (II.2) 

where is the location of the a^^ origin. The scattering 

factor (fa(k)) is thus given by 

fa(k)-JdV pa(r) exp(ikT). (II.3) 

This research involves the superimposition of the 

electron density contributions of individual atoms on the 

real molecule's atomic sites as a representation of that 

molecule. p^fr) is therefore taken to be the atomic electron 

density and fa(k) is the atomic scattering factor. 

The electron density for an individual atom can be 

written as 

Pa(c)"E^^v ^a//v ( r ) X^(r) (II«4) 

where Pg/iv is the electron density matrix, u represent 

n^l^m^, and x^(r)=Rni(r) Yim(O). 

Substituting Equation (II.4) into Equation (II.3) yields 

fa(k) = Zp,v ^a/tiv X^(r) X^fr) exp(ikT) (II.5) 
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which, by separation into even and odd functions, can be 

rewritten as 

fa(k)-fg(k)+ifg(k) (II.6) 

where 

(II.7a) 

and 

fa(k)"2yt/,v Pa//v ^ayuv^^^* (II.7b) 

The even (9) functions have l^+l^-2n and the odd (U) 

functions have l^+l^»2n+l. This originates from the parity 

of the atomic wavefunctions X(r). 

The orbital scattering factors (fapv(k)) are defined as 

fapv(k)-JdV Xp(k) Xv(k) exp(ik*r) (II.8) 

which has both even and odd representations. 

Utilizing the plane wave expansion^^, exp(ikT)" 

4JI El iL jL(k r) [2ft—L where are the 

spherical Bessel functions^^, Equation (II.8) can be written 

as 

fa*v(k)"ZL (-1)^/2 <jL(k)>^v ZL(P,^) (II.9) 

which also has both even and odd representations and where 

<jL(k)>pv"4n Jdr r^ jL(k r) R^(r) R^fr) (11.10) 

and 

ZL(P,V)-E^ <Y„(2) |Ylm(S2) |Yv(2)> Y^mtOk)- (H-H) 
M=—L 

Evaluation of Equation (II.9) involves the evaluation of 

two integrals, one over r and the other over 5. The 
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integration in Equation (II.10) is unavoidable and is 

described in Appendix B. Evaluation of Equation (II.11) is 

facilitated by detailed analysis of the analytic functions 

involved. 

The values24 of Y^(2) consist of a function of * ($m(*)) 

and a function of 0 (0im(8))' The ^-integral in Equation 

(11.11) is zero unless (see Table II.1 for a 

listing of the results of the * integration). Thus it can be 

separated into two parts corresponding to two possible values 

of M 

Vl(/u,v)-^ (l/2ii) Jd0 P\, Pl( |m//| + |mv| ) (II.12a) 

and 

WL(/WrV)-^( 1/211) Jde P^ Pv Pl| |m//|-|mv| I (II.12b) 

where the P^ are the normalized associated Legendre functions 

defined as P^(x)»^{[(21+1)*(1-m)!]/[2(1+m)!]} (l-x?)™/^* 

(d/dx)l+m [(x2-l)l/(2l 11)]. 

The integral in Equation (11.11) is of the same form as 

the Clebsch-Gordon coefficients^S. Due to some differences 

in form. Equations (11.12) have been reevaluated and are 

listed in Table II.3. 

We are now in a position to rewrite Equation (II.9) as 

fafv(k)=ZL <jL(k)>pv ZL(A,v) (11.13) 

which has both even and odd representations and where M is in 

the range [0,L] and the following redefinitions have been 
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Table II.1. Z£,(//,v) after integration over * 

™1 ®2 ZL(*,v) 

V£,(lim,l20) Y^O 

m 0 
0 m 
•m 0 
0 -m 

m 

-m 
m 
-m 

m 

m 
-m 
-m 

«1 «>2 

-»! »2 

®1 ~®2 

— — 1 1 * 2  

ïî 
1/42 Vl 

+Wi, 
-1/42 Vj, 
1/4 2 VL 

VL 
+WL 

1/4 2 
+ 1/42 
1/42 

+1/42 
1/42 

-1/42 
-1/4 2 
+1/42 I 

im,l20) 
lO,l2m) 
im,l20) 
10,12») 

1»,I2®) 
im,l2m) 
1»,I2®) 
im,l2m) 
im,l2m) 
1»,I2®) 

1"1 
1^1 
1®1 
1«»1 
l^l 
1«1 
1®1 
1"1 

12*2 
12^2 
l2«2 
l2«>2 
l2™2 
l2'»2 
l2™2 
l2«2 

*L(-m) 
YL(-m) 

XL(2m) 
Ylo 
XL(-2m) 
*L(-2m) 
*L(2m) 
Ylo 

*L(ral+m2) 
*L|ml-m2| 
)[l( -ml—ni2 ) 
^L(-1ml-m21) 
L(—ml—ro2) 
XL(-|ml-m2I) 
'L(ml+m2) 

Iml-m2I 

sign(mi-m2) 

sign(mi-m2) 

is a positive number, -mi is a negative number 

Table II.2. Listing of the Y^wtOk) functions 

L M YLM(Ok) L M YLM(Ok) 

0 0 

1-1 
1 0 
1 1 

42 k/ 
. 1/ 
42 h/ 

2-2  
2-1 
2 0 
2 1 
2 2 

4(15/2) 
430 
4(5/2) 
4 30 
4(15/2) 

h k/|h|2 

' K!:!: (31 )/|h| 

)/|h| 
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Table II.3. Values of V^C/u^v) and Wi(p,v) 

<linil I LMI l2ni2> <limi | LM | l2iH2> <limi|LM|l2m2> 

<11|31|22> -4(9/245) 
<11|30|21> -4(27/245) 
<11|31|20> 4(54/245) 

<00|00|00> 1 

<00|11|11> 1 
<00|10|10> 1 

<11|00|11> 1 
<11|21|10> 4(3/5) 
<11|22|11> 4(6/5) 
<10|00|10> 1 

<00 22 22> 1 
<00 21 21> 1 
<00 20 20> 1 

<11 11|22> 4(6/5) 
<11 10|21> 4(3/5) 
<11 11|20> -4(1/5) 
<11 32|21> 4(6/7) 
<11 33|22> 4(9/7) 
<10 32|22> 4(3/7) 
<10 11|21> 4(3/5) 
<10 10|20> 4(4/5) 

<22 00 22> 1 
<22 21 21> 4(30/49) 
<22 22 20> -4(20/7) 
<22 43 21> 4(35/49) 
<22 44 22> 4(10/7) 
<21 00 21> 1 
<21 21 20> 4(5/49) 
<21 22 21> 4(30/49) 
<20 00 20> 1 

<11|20|11> -4(1/5) 

• <10|20|10> 4(4/5) 

<10|31|21> 4(24/35) 
<11|30|20> 4(9/245) 

<22|20|22> -4(20/49) 
<22|41|21> -4(5/49) 
<22|42|20> 4(15/49) 

<21|20|21> 4(5/49) 
<21|20|41> 4(30/49) 
<21|42|21> 4(40/49) 
<20|20|20> 4(20/49) 

<22(40|22> 1/7 

<21|21|40> -4/7 

<20|40|20> 6/7 
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made; <jL(k)>^^ has been divided by 4ii, </'|Ylj||v> has been 

multiplied by 4[(2L+l)/4n], and has been multiplied 

by either (-1 ( 4n/{ 21+1 ) ] for L-2n or 

(_1)(L-1)/2*4[4„/(2l+1)] for L-2n+l. Table II.2 lists the 

functions 

Interpretation of the electron density matrix (P^) in 

terms of the classical chemistry concept embodied in the 

Pauli principle reveals that certain constraints should be 

placed on the coefficients. The Pauli principle states that 

no more than two electrons can have the same nlm quantum 

numbers. 

As a first approximation this can be realized by 

constraining the Pg^^ values to the interval [0,2], although 

this does not strictly comply to the Pauli principle since it 

is the eigenvalues of P^ which need be constrained. Attempts 

to constrain Pg^^ alone failed to yield proper eigenvalues 

and thus a straightforward method of applying constraints to 

the entire Pg matrix was sought. 

It was found that a simple way to achieve this was to 

diagonalize the density matrix, viz 

Na-Ua+ Pa Ua (II.14) 

where Ua is a unitary matrix which diagonalizes Pa and Na is 

the eigenvalues or occupation numbers. Substituting the 

spectral representation of Pg into Equations (II.4) yields 

Pa(r)"£^,v ̂ avn ̂ an ^a/un Xyu(r) X^(r) (11.15) 

or, by rearranging, 
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Pa(f)"Bn ^an ^a//n X#(f) Xv(') Uavn (II.16a) 

-En Nan ̂ an(r) (II.16b) 

where Yan(r)"&v Xv(r) Uavn-

Further substitution of the spectral representation into 

Equations (II.7) yields an expression for the corresponding 

scattering factors 

fa(k)-Zn Ngn fann(k) (11.17) 

where 

famn(k)"2p/v Uapm fap^(k) Ug^n (II.18) 

which can also be split into even and odd functions (f§mn(k) 

and fauin(k))» 

Additional parameters must now be added to the "ideal" 

atomic scattering factors described by Equation (II.3) (or 

equivalently by Equations (11.17) and (11.18)) to model the 

real molecule. 

The first parameter is that of the temperature 

factor26f27 (Ta(k)) which models the various motions of the 

atoms in the crystal. The functional form is 

Ta(k)-exp(-B sin2(e)/x2) (II.19a) 

for isotropic vibrations, and 

Ta(k)-exp(-Zi,j 0ij hi hj) (II.19b) 

for anisotropic vibrations. Both of these functions sharpen 

the atomic scattering factors and thus broaden the electron 

density distribution. 

The rms amplitudes of vibration of the atoms are 

obtainable from the thermal parameters (B and 3ij). The 
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isotropic thermal parameter is related to the isotropic rms 

amplitude of vibration (u) by 

u-4[B/(8n2)] (II.20a) 

and, for the anisotropic uij, 

Ui Oi j/( 211^ a|*aj)]. (II.20b) 

Another parameter which is often necessary is the atom 

site multiplicity factor (m^). This value accounts for the 

multiplicity due to the site symmetry of an atomic site. A 

multiplicity factor is also used if an atom does not reside 

100% of the time at a given site in the cell; in this case m^ 

represents the fraction of the time in which the atom is at 

the site. 

The calculated structure factors (F(k)) must be placed on 

the same scale as the observed structure factors (E(k)) and a 

scale factor is therefore included. 

Applying these additional parameters to Equation (II.2) 

yields 

F(k)-Ea Pa(k) (11.21) 

where the atomic structure factor (Fa(k)) is 

Fa(k)"S mg Ta(k) fa(k) exp(ikTa) (11.22) 

and represents the individual atom's contribution to the 

total scattering at k. 

Fa(k) may be split up into its real and imaginary parts, 

viz 

Fa(k)=s ma Ta(k) [f|(k) cos(k-ra)-

f U ( k )  sin( k - r a ) ]  (II.23a) 
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and 

Fa(k)-s nia Ta(k) tfi(k) sin(kTa) + 

f§(k) cos(kTa)] (II.23b) 

so that 

Fa(k)-F;(k)+iP;(k). (II .24) 

Up to now we have not considered the effect of the x-

ray's frequency on the atomic scattering factors. When the 

x-ray frequency is on the same order of magnitude as that of 

the electron-nuclear dipole oscillation frequency, the x-rays 

are strongly absorbed. This occurs most strongly for core 

electrons since the coupling is strongest there. This also 

implies that 1) the magnitude is dependent on the radiation 

used, 2) there is little sin(9)/X dependence, and 3) there is 

no contribution from the valence electrons which means there 

is no directional dependence. 

The correction terms for this effect (called anomalous 

dispersionZB) are added to the core scattering factors and 

have real and imaginary components (fcorr(k)=f(k)+6f'(k)+i* 

6f"(k)). The values of 6f' and Af" are vanishingly small for 

atoms with atomic numbers less than 10. 

Equation (11.24) can be written to explicitly include the 

components of the phase factor («%), i.e., 

and illustrates the fact that the imaginary component cancels 

for light atom centrosymmetric structures (heavy atom data 

suffers from anomalous dispersion). Also we see that 

F(k) = |F(k)| cos( a |^)+i |F(k) I sin(ajj) (11.25) 
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and 

co8( ojt)-p' (k)/| P(Ic) I 

sin(ak)-F ( k )/|F( k ) I  

(II.26a) 

(II.26b) 

Orthogonallzation 

Use of the angular part of the spherical harmonics 

(listed in Table II.2) dictates the use of an orthogonal 

orbital scattering factor reference system. As the equations 

are to be used in reciprocal space, an orthogonalization 

matrix (0*) is needed which orthogonalizes reciprocal space. 

Since we often use an orthogonalization matrix (O) in real 

space, it would be beneficial to have them related in a 

simple manner. 

The standard form^G of 0 is 

1 C O S ( Y ) cos( P )  

0- 0 sin(Y) -sin(g)*cos(**) (II.27a) 

0 0 sinO) *sin(a*) 

which takes to aj as shown in Figure II.1. 

Using the relation between real and reciprocal space 

vectors (ai*-(aj'ak)/(ai'ajxak)), it is clear that, in an 

orthogonal system, aj* and a^ are parallel and that ai*=l/ai. 

Keeping this concept in an orthogonalized system one obtains 

sinO*)*sin(Y) 0 0 

O*- -sinO*)*cos( r) sin(a ) 0 

cos(0*) cos(a ) 1 

(II.27b) 
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7) a 
6) 3-90 
9) a*-90 

Figure II.1. Diagram of rotation angles for 
orthogonalization of real and reciprocal space 
lattices, o, 6, and y are real space lattice 
angles, a , fi , and y are the reciprocal 
space lattice angles 
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which will take the non-orthogonal a^* basis vectors and form 

the ' which, as seen in Figure II.1, are parallel to the 

basis vectors. 

As a check on the correctness of 0 and O* one may make 

use of the relationships O^ O-G and where is 

the transpose of O, and G and G* are the so-called metric 

tensors (inner product matrices) in real and reciprocal space 

respectively. 

Model Refinement 

Adjustment of the model's parameters for optimization of 

the agreement between the observed and calculated structure 

factors is performed in a weighted, least-mean-squares 

fashion. 

There are two methods which are fundamentally different. 

The first (Method I) presumes that the phases are not known 

and thus does not rely on them. The second (Method II) 

assumes that the phases are known or will not change after 

adjustment of the model's parameters. The derivations for 

both methods are given Appendix A. The normal equation for 

Method I (Equation (A.5d)) is given again here for 

convenience 

Zk WR ^r 3|F(k)|/3v 3|F(k)|/3r Ar= 

Sk "k [|E(k)|-|F(k)I] 3|F(k)|/3v. (11.28) 
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Table II.4. Derivatives of the structure factors 

Parameter dP'/SP 

s Fa(k)/s 

®a Fa(k)/ma 

*ai -2n hi Fa(k) 

Ba -sin2(0)/x2 F^fk) 

Paij (i<i) (Sij-2) hi hj F;(k) 

Nan s mg Ta(k) [fin(k) cos(k'ra)-fgn(k) sin(kTa)] 

tamn (m<n) 2(Nan"Nam) ® "^a Ta(k) famn cos(kTa) 

U/fm 

sin(k-ra)} 

Parameter 3F"/9P 

s F;(k)/s 

ma Fa(k)/ma 

*ai 2 n  hi Fa(k) 

Ba -sin2(e)/x2 Fa(k) 

Gaij (i<i) (8ij-2) hi hj Fa(k) 

Nan s ma Ta(k) [fgn(k) sin(k-ra)+fgn{k) cos(k-ra)] 

tamn (m<n) 2(Nan~Nara) ® '"'a Ta(k) famn cos(k*ta) 

U/ym 

Ua^m+(2v Uavm) + (Ev Uavm'^ 
cos(k-ra)} 
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The derivatives for each parameter, except ta^n, are 

obtained in a straightforward manner from the Equations 

(11.17) through (11.24) and are listed in Table II.4. The 

tamn parameters are discussed in the constraints section 

below. 

The derivatives in Equation (11.28) are of |F(k)| and 

therefore the relationship 

a|F(k)|/3p-ap'(k)/3P cos(ak)+3P"(k)/3P sin(ak) (11.29) 

is needed (as given in Equation A.6). 

Constraints 

There are numerous restrictions which must be applied to 

the parameters in the form of constraints. The restrictions 

in general keep the parameters from having non-physical 

values. Below, each of the parameters is discussed with 

respect to its appropriate range of values and the means used 

to keep the parameters in this range. 

The scale factor (s) must be a positive number. To avoid 

a zero value for s it is standard procedure to define it as 

E(k)-s F{k). Defining s the the other way around often 

causes s to adjust to zero due to correlations between the 

multipliers, the temperature factors and the scale factor. 

The atom site symmetry multiplier/occupancy factor (m^) 
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lies in the range (0,1]. In the former case it is related to 

the site symmetry multiplicity divided by the number of space 

group symmetry operations and in the latter case it is 

defined as the fraction of the time an atom exists at a 

particular site. If m^ leaves the range indicated, manual 

action is required to reset it. 

At times the occupancies of two or more different atoms 

are interrelated. In these cases the derivatives are also 

interrelated and thus, to apply the constraints, one must 

consider their interdependence via Equations (11.21) through 

(11.23). Suppose we have a case where two atoms share the 

same site in a random fashion so that mg+mj^^l. The structure 

factor equation may be written as 

F(k)-Fa(k)+Fb(k)+Ec Fc(k) (II.30a) 

(c><a,b) and the derivatives w.r.t. m^ and my are 

3F(k)/3ma-F(k)/ma (II.30b) 

and 

3F(k)/9mb=F(k)/mb. (II.30c) 

Since my-l-mQ we may rewrite Equation (II.30a) as 

F(k).Fa(k)+(l-ma)/mb Fb(k)+Zc Fc(k) (II.30d) 

and thus the derivatives become 

aF(k)/3ma-F(k)/ma-F(k)/mb (II.30e) 

and 

3F(k)/3mb=0 (II.30f) 

which is the same as subtracting Equation (II.30c) from that 

of (II.30b). The need for generality in programming dictates 
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that the derivatives in each variable are calculated as if 

unconstrained. One may constrain the derivatives by writing 

a special subroutine which forms Equations (Il.SOe) and 

(IZ.BOf) from Equations (II.30b) and (II.30c). Another 

subroutine is written which applies the constraint my-l-mg to 

calculate my after the new m^ has been found. 

The atomic coordinates are not constrained in general. 

Due to special crystallographic symmetry at an atom site, the 

value of one or more of the coordinates may have to be fixed 

at a particular value. Some cases exist where the values of 

the coordinates on either an individual atom or on different 

atoms are interrelated. If constraints such as these are 

needed, one must follow a procedure similar to that described 

for mg. 

The thermal parameters model the atomic vibrations and 

are related to the rms amplitude of vibration (u) of the 

atom. The isotropic temperature factors have the relation 

given in Equation (II.20a) and thus B must be non-negative to 

be physically meaningful. The anisotropic temperature 

factors have the relations given in Equation (II.20b) and 

thus the fi tensor must be positive definite to describe 

physically meaningful vibrations. 

Positive definiteness means that x? g x is positive for 

any real vector x. A practical test for positive 

definiteness is that the matrix and all its diagonal cofactor 

matrices must have non-negative determinants and the diagonal 



www.manaraa.com

24 

elements themselves must be greater than zero. If a non-

positive definite matrix would result from an adjustment, the 

shifts have to be either artificially damped or ignored. 

A couple of useful definitions which relate B and 3 are 

0-B/4 G (II.31a) 

and 

Bave-l/(6n2) Tr{3G}. (II.31b) 

There are cases in which the temperature factors are 

constrained either to zero or to one another^^ because of the 

symmetry of the site. Interrelations are solved in a manner 

similar to that described for m^ above. 

The orbital occupation numbers (Ngi) are constrained to 

lie in the interval [0,2] by the Pauli principle. If a value 

attempts to shift out of this range, the shift must either be 

damped or ignored. 

There are other constraints which are generally applied 

to the Ni, namely that the total number of electrons on an 

atom remains fixed at the free-atom value. To realize this 

restriction, Lagrange multipliers^® must be used. The 

constraint which we wish to apply for all atoms is that Ei 

ûNgi-O, where ANgi is the shift in . The quantity to be 

minimized (7) (see Equation (A.l)) is thus modified as 

7=7+Xa Zi ANai (II.32a) 

where Xg is atom a's Lagrange multiplier. Henceforth the 

factor of 2 in Equation (A.l) is implicitly included in Xg. 

Using Equation (A.5e) for determination of the AN^ values 
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of a given atom and adding the constraint yields 

m̂ ̂ nm ANm-Bn+̂  

whose solution for is 

(II.32b) 

ANm"%n ^)mn Bn+^ ^)mn* (11.32c) 

Summing Equations (II.32c) over m yields 

®"^m^n (A ̂ )mn Bn+Em^n (II.32d) 

from which the value of X for the atom may be obtained. One 

might also formulate Equations (11.32) for calculating X for 

all atoms simultaneously. 

A different electronic constraint which can be applied is 

to keep the total number of electrons in the unit cell fixed 

at a particular value such as the free atom total. To do 

this m and n would now represent all atoms and all orbitals 

in Equations (11.32). 

The spectral representation matrices (U^) are orthogonal. 

Adjustment of the coefficients requires the introduction of 

the parameters t^mn' is not necessary to define tg^n 

since it is the Atgmn's which are of interest. 

The shifts in U for a given atom are AU so that 

U-U"+AU. (II.33a) 

Making the following definition 

we see that, to maintain the orthogonality of U, At must be 

an antisymmetric matrix and that it vanishes in the second 

order (since U*" Usi). 

Substituting Equation (II.33b) into Equation (11.17) 

U=U* (I+At) (II.33b) 
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yields 

fa(k)-Tr{uJ (1+Ata) Ng (i-Ata) ujt (II.34a) 

where fa(k) are composed from the new values of fann(k)' 

This can be simplified and rewritten as 

fa(k)"f|(k)+Em<n Atamn 2(Nan~Nam) famn(k) (II.34b) 

where the factor of two originates in the number of 

independent parameters of Ua (- n(n-l)/2). 

Now we want to consider the derivative of F(k) w.r.t. 

tamn (nub. not Atamn)* One can visualize Equation (II.34b) 

as a first order Taylor series expansion in the variable 

tamn' thus the derivative of Equation (11.22) w.r.t. tamn is 

3Fa(^^/^^amn"® ^a ^a ^(^an~^am) f^(k) exp(ik*r). (11.35) 

In general the antisymmetric Ata matrix is not strictly 

orthogonal. To force this one must use the approximation 

(I+Ata)=(I-Ata/2)-l (I+Ata/2) (11.36) 

which, again to first order, is orthogonal. 

There are also crystallographic and chemical symmetry 

constraints on the orbitals to account for. This can be 

accomplished by relating the derivatives (as described for 

ma) and the parameters. This is facilitated by use of 

rotation parameters (non-variable) which will orient the 

orbital reference system in any desired direction. 

Using the standard electron density matrix (P) for a 

given atom, the relations due to symmetry are obtained from 

the character tables. For an orbital product (XiXj) to be 

non-zero the product must lie in the totally symmetric 
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representation (Ai) of the site symmetry. 

When using the orbital occupancy numbers (N) and the 

spectral representation (U), as is used here, the relations 

are not as straightforward to obtain. The desired net result 

is that the total valence density has the symmetry of the 

site. Due to the way the equations are written and the 

definitions used, it is not possible to constrain the t^j 

parameter shifts. Instead the derivatives of the U matrix 

are constrained as are the N parameters. To do this models 

are defined which consist of the different U and N 

combinations which cause the valence electron density matrix 

to follow the site symmetry. The parameters of the model are 

then defined and refined either by using the standard least 

squares procedure coupled with a specially written procedure 

or by using a specially prepared procedure to form the normal 

equations matrices, solve for the shifts, and apply the 

appropriate constraints. A few examples are described in 

Appendix D. 

Electron Density Functions 

The X-type (scale, atomic positional and thermal) 

parameters of the model are often the desired results from a 

crystallographic analysis. There is however other 

potentially useful information which may be obtained from 

either a qualitative or a quantitative interpretation of the 

electron density functions. 
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The experimental electron density function is calculated 

from a Fourier synthesis of the E(k) values 

Pexp(r)"(l/Vcell) E(k) exp(-ik*r) (11.37) 

and Pcal(f) can be obtained from a similar expression 

involving F(k). 

The resultant function is not very informative since the 

deformation density is approximately two orders of magnitude 

less than the core electron region which would therefore 

dominate this type of map as seen in Figure II.2. 

There are literature examples^l in which the region 

around the atomic core is set to zero in order to examine the 

relatively small deformation density. This procedure is ill-

advised since the dataset is of finite resolution and the 

Fourier transform of a limited dataset produces ripples in 

the electron density. This, coupled with the fact that the 

core electrons are the main contributors at high angles (as 

seen in Figure B.l) and thus subject to the most severe 

truncation effects, produces results whereby the 

interpretation is of little value. An example of this is 

shown in Figures II.3. Figure II.3a contains only the 

calculated Is orbitals and none of the fine details are seen 

at this level of contouring. Figure II.3b is of the same 

orbitals with a maximum contour value of 1. The Fourier 

ripples could, in the standard interpretation, be seen as 

deformation density. We know however that these details are 

actually ripples and due to the limited resolution of the 
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Figure II.2. Observed electron density* for 1.2,3-triazine. 
Contour interval (CI) is 2.0e~/A^. See 
Appendix E for an explanation of this and all 
other contour maps 

Figure II.3. Calculated electron density (left) for carbon 
and nitrogen Is orbitals. Similar drawing 
(right), peaks truncated at 1.0e~/A^. 
CI-0.1e-/A3 
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V"--

£ 
Q n o \ ' s  

Figure II.4. Electron density difference maps with various 
signal to noise ratios. The ne(E(k)) cutoff 
are 0, 3, and 20 for a, b, and c respectively 
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experiment. 

A more useful function is 

r) —P]{( r) (II.38a) 

-d/Vcell) Ek (E(k)-Fx(k)) exp(-ik-r) (II.38b) 

which is generally called a difference electron density 

function. The resultant function's interpretation depends on 

the definition of x. When Px(r) is the entire promolecule 

the result is called a deformation density and represents the 

electronic shifts which occur during molecular formation. 

Examples of Px(^) are given throughout the remaining 

chapters. 

Aside from the definition of the promolecule there is 

another item which strongly affects the deformation density-

that of the signal-to-noise ratio. 

Generally a limit is set on the signal-to-noise ratio by 

selecting data for which |E(k)|>na(E(k)) where n is selected 

somewhat arbitrarily (sometimes as high as 20). While there 

is some merit to this, its effect on the interpretation has 

been ignored. 

The Fourier series given in Equations (11.38) reveals 

that each reflection where E and F are not exactly equal will 

have some effect on the magnitude of ûp^ and thus ignoring 

these data will flatten the resultant function. Nearly every 

author who has created ûp^ maps points to the background and 

states that, since it is fairly flat, the dataset is good. 

This is a fallacy since their maps use some value of n 
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(usually greater than 2) which could readily throw-away a 

significant portion of the information. An example of the 

artificial improvement of the dataset is shown in Figures 

II.4 which reveals that the interpretation of maps (and the 

apparent data quality) in this manner is clearly biased by 

the experimenter. One should also note that the "bond peak 

heights" are also affected by the choice of n. 

This dilemma cannot be solved in the above manner. It is 

necessary to return to the data collection procedure and 

measure reflections which have low signal-to-noise ratios in 

a manner which will improve the quality of these reflections. 

Reflections which are very weak do not contribute 

significantly in the Fourier synthesis and can be ignored. 

Another possibility is to use a Fourier filtering 

technique which would transform the intensity data, smooth 

the intermolecular regions, and re-Fourier transform the data 

to give an "improved" dataset. It is not clear whether this 

procedure would introduce experimenter bias into the data but 

may well be worth a future study as it is untested at this 

time. 

Statistical Analysis 

Analysis of the results from any model fit to 

experimental data would be incomplete if statistical checks 

are not made. A summary of the more common tests is given 

here. For the purpose of this thesis only analysis 
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pertaining to the correctness of the resultant model and the 

electron density function are described. 

For comparison of the experimentally determined (E(k)) 

and calculated (F(k)) structure factors there exist a number 

of approaches32, none entirely satisfactory in themselves, 

which are useful in different ways. 

The first is that of the least squares error (LSE) 

LSB-Ejç <d (ÛF)2 (11.39) 

where u is the weight and ÛF is taken to be ||E(k)|-|F(k)||. 

This function is the minimized quantity and should never 

increase during a given refinement cycle. It can also 

provide a comparison between models if used judiciously. 

The error of fit (ERF) (a.k.a. goodness of fit) is the 

statistical standard deviation of a reflection of unit 

weight: 

ERF-(LSE/D0F)l/2 (11.40) 

where the degrees of freedom (DOF) of the system is defined 

as the number of observations minus the number of variables. 

The ERF is normalized and permits a comparison between 

different models as well as different structures. 

The residuals are also normalized error functions, 

R=(Zk |6F|)/(Ek |E(k)|), (II.41a) 

Rw=[(Zk (*) (6F)2/(Ek 0) |E(k)|2]l/2, (II.41b) 

and 

Rl=Zk |E(k)2_F(k)2|/(Zk E(k)2 (II.41c) 

which also allow comparisons between different structures and 
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models. Since is mostly closely related to the LSE it is 

the most meaningful, however comparisons against R and R; 

provide a check against a faulty weighting scheme. 

The residuals can be defined for all data or for subsets 

of the data. Reciprocal space zones and sin(8)/X ranges are 

commonly the subsets of choice. 

Counting the total number of reflections which have AF 

between (n-l)a(E(k)) and na(E(k)) generally produces a 

Gaussian type distribution which can be analyzed for the 

appropriateness of the calculated standard deviations as well 

as how good the model fits the data. This function can also 

point out proper ne(E(k)) cutoffs. 

One type of ne(E(k)) cutoff is used to define reflections 

for which the signal-to-noise ratio is too small for the 

reflection to be reliably used as discussed earlier. Another 

type of na(E(k)) cutoff is used to define reflections which 

are so poorly fit by the model's calculated structure factors 

that they are suspected to be "bad" reflections and hence 

that the reflections deserve a closer examination. 

A check on serial correlation is obtained from the 

Durbin-Watson d statistic which is defined as 

DWd=(Ek.2 (AFk-6Fk_i)2)/(Ek (AF) 2 ) .  (11.42) 

DWd should be 2 if no correlation exists and less than 2 if a 

positive correlation exists. The use of this function 

requires the data to be sorted according to the type of 

correlation to be checked (such as time or sin(0)/X). 



www.manaraa.com

35 

The standard deviation of a variable (a(Pj.)) is obtained 

from 

<T(Pi)-{bii)V2 erf (11.43) 

where b^i is the diagonal component of the inverse of the 

normal equations matrix Anm. 

The standard deviations are sometimes used in conjunction 

with the parameter shifts to check if the refinement process 

is finished. This is accomplished by assuming that if the 

parameter's shift divided by the parameter's standard 

deviation is less than 10, the structure is very close to its 

final position and further refinement will produce no 

significant change. 

Calculation of the eigenvalues of the Hessian (second 

order derivative) matrix is necessary to test^^ whether or 

not the structure is at a saddle point on the least squares 

surface. More than a few negative eigenvalues imply that the 

structure is at a saddle point and should be perturbed and 

refinement continued. 

Correlations between variables (5ij) are given by 

Sij"bij/(bii bjj)l/2 (11.44) 

and lie in the interval [-1,1]. Correlations greater in 

magnitude than about 1/2 imply that a relation exists between 

the variables. If the magnitude approaches 1 the variables 

cannot be adjusted simultaneously and one must either find 

the relation between the variables and so constrain the 

system, or refine the variables on different least squares 
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cycles. If the magnitude of S^j is 1 then the normal 

equations matrix is singular and the least squares equations 

cannot be solved in the standard manner. 

To obtain a feel for the quality of the electron density 

function one may use 

<r(Po)-l/Vcell [2k (6F)2]l/2 (11.45) 

which is an average standard deviation of the electron 

density. 

It is of extreme importance to realize the downfalls of 

the functions described so far in terms of the 

superimposition-of-oriented-atoms approach. 

The first is that none of these statistical functions 

(except for DWd) account for systematic errors (such as 

incorrect corrections or refining on |F(k)| rather than I(k)) 

and thus they are really only a measure of the precision of 

the fit, not the accuracy. To check accuracy one must 

compare the results with other accurate experiments (such as 

neutron diffraction), with theoretical calculations (which 

may not actually be very realistic), or with a firm 

conceptual background (which introduces experimenter bias). 

The second, and the most important item, is that the 

promolecule approach does not attempt to fit the deformation 

density (or rather we hope that it does not). This can be 

translated into meaning that the statistical analysis of low-

order data must be treated with great care and is generally 

suspect. Analysis of the high-order data on the other hand 



www.manaraa.com

37 

should produce very reliable results since the promolecule 

model does fit very well in this region. 

A third point which should be mentioned is that, since 

these functions are statistical, there must be a sufficient 

data to obtain meaningful results. For most functions this 

usually translates into an observation to variable ratio of 

at least 8, with something approaching 30 being preferable. 
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CHAPTER III. 1,2,3-TRIAZINE 

Introduction 

An extensive study of compound 1,2,3-triazine is 

described in this chapter. In order to develop a procedure 

for obtaining highly accurate parameters and also valence 

orbital information, nine trial approaches are presented and 

comparisons between them made. These trials range from using 

the standard crystallographic approach to using a high-

accuracy approach in which the valence orbitals are oriented 

and molecular ionization allowed. The feasibility of 

obtaining valence orbital information from various approaches 

is herein shown. 

The general procedure used for refinement and the 

convergence criteria are described in Appendix E. As the 

approach taken here is to develop a rote method of obtaining 

the promolecule's parameters, all structure refinements 

followed similar procedures, allowing comparisons to be made. 

The electron density functions are shown as two-dimensional 

contour maps and in ORTEP-type illustrations. The features 

of the maps and drawings are discussed in Appendix E. 

Preliminary Discussion 

The compound itself is ideal in several ways. It 

involves light atoms and thus the relatively small 

deformation density is more readily seen. The molecule^^ 
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crystallizes in a centrosymmetrie space group. The molecules 

have extended hydrogen bonding and thus rigid body motion is 

minimized. The molecule and the dataset are both small which 

helped expedite the testing of various approaches and 

analysis routines. The molecule is nearly planar which 

simplifies the understanding of difference density maps. The 

molecule also has,a chemical symmetry (C2) axis allowing for 

a check on the actual data quality and on the refinement 

results. 

A summary of the pertinent data and crystal parameters is 

given in Table lll.l. The carbon and nitrogen (SCF) 

Table IIZ.l. Summary of data and crystal parameters for 
1,2,3-triazine 

Chemical formula 
Crystal system 
Space group symbol 
Lattice parameters® 

Temperature of data collection 

N393H3 . 
triclinic 
PT 
a-5.7688(4)Â 
b»6.8732(6)Â 
c-5.6725(4)Â 
lOOK 

*-110.080(6) 
(3-113.947(5) 
Y- 95.302(6) 

Total number of reflections 9046 
Number after averaging 2187 
Number observed 2032 (I>0) 
Internal agreement" 0.027 
Radiation Mo k„ (X=0.71Â) 
Sin{0)/X (min/max, Â~^) 0.08/0.90 

^Estimated standard deviations in the least significant 
figures are given in parentheses in this and subsequent 
tables. 

^Defined as Rint(<I>)= <|<I>|-|I|)/(Ek 
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scattering factors used are described in Appendix B. other 

carbon and nitrogen scattering factors (HF) values^® were 

used in some cases as a comparison. Modified hydrogen 

scattering factors^G were used in all cases. 

The dataset^^»38i ^ot considered ideal. The data range 

is small. Generally data used in a high-order refinement 

should be above about sin(0)/X-l.0A~^. The implications of 

the low resolution are described below. Also, the quality of 

the data is questionable. In another study39, data from the 

same source were found to be of lower quality. Other 

compounds obtained by this author from the same source are 

also of low quality. The chief criteria in both cases are 

that the thermal factors either do not agree well with other 

sources, or that the hydrogen thermal parameters do not 

refine to physically meaningful values. For this reason the 

hydrogens' parameters will not be discussed at any length. 

Since the dataset is not ideal we cannot hope to obtain 

perfect results. On the other hand, if the valence orbital 

refinement does yield good qualitative information, it will 

be quite satisfactory to know that a very good (and rare) 

dataset is not required. 

There are nine different trials (labeled 1 through 9) 

described in the remaining sections. A summary of the trial 

structures' refinement conditions are given in Table III.2. 
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Table III.2. Summary of refinement conditions for the trial 
structures 

Scattering Adjustable Refinement Electronic 
Trial factors® parameters" class^ constraints" 

1 SCF X Std Std 
2 HF X Std Std 
3 SCF X Mix Std 
4 HF X Mix Std 
5 SCF X,Y Mix Std 
6 SCF X,Y Std Std 
7 SCF X,Y Mix Ion 
8 SCF X,Y Low Std 
9 SCF X,Y Mix Tot 

®SCF values are from this work (see Appendix B). HF are 
the Hartree-Pock values^^. 

bx-type parameters are the scale and the atomic 
coordinates and thermal parameters of the carbon and nitrogen 
atoms. Y-type parameters are the valence orbital parameters 
and also the hydrogen atoms' parameters. 

C"std" implies that all data were used in the refinement. 
"Mix" implies that the high-order data was used for the X 
parameters and all data for the Y parameters. "Low" implies 
that all the parameters were refined against the low-order 
data (sin(e)/X<0.6) only. 

^The standard constraints (Std) are that each atom 
maintains neutrality. Allowing the molecule to ionize (Ion) 
imply that there are no constraints on the valence electrons. 
Allowing electron transfer between the valence shells of 
different atoms implies that the total (Tot) molecular 
electronic charge is conserved. 
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Table III.3a. Atom coordinates^ (fractional, 10~^) for 
atoms in 1,2,3-triazine 

X 1 2 3 4 5 6 7 8 9 

Nl 6772 6772 6777 6777 6776 6773 6776 6773 6776 
N2 9072 9072 9068 9068 9068 9071 9068 9073 9068 
N3 9715 9715 9710 9710 9710 9716 9710 9714 9710 
CI 7996 7996 8000 8000 7999 7996 7999 7998 7999 
C2 5558 5558 5557 5557 5557 5558 5557 5560 5557 
C3 5038 5038 5040 5040 5040 5039 5040 5047 5040 
HI 8588 8596 8569 8594 8618 8594 8591 8609 8614 
H2 4298 4287 4265 4302 4270 4327 4330 4310 4274 
H3 3382 3391 3313 3353 3355 3393 3373 3401 3345 

y 1 2 3 4 5 6 7 8 9 

Nl 2965 2964 2964 2964 2964 2964 2964 2964 2964 
N2 2578 2578 2576 2577 2577 2577 2577 2577 2577 
N3 2135 2135 2137 2137 2137 2134 2137 2135 2137 
Cl 2063 2062 2060 2060 2061 2062 2061 2064 2061 
C2 2433 2432 2431 2431 2430 2432 2430 2432 2430 
C3 2900 2899 2900 2900 2900 2899 2900 2897 2900 
Hi 1765 1764 1532 1500 1800 1762 1807 1810 1804 
H2 2460 2452 2131 2137 2390 2463 2426 2437 2395 
H3 3288 3284 2990 3000 3245 3315 3237 3283 3230 

z 1 2 3 4 5 6 7 8 9 

Nl 369 369 375 374 374 368 374 370 374 
N2 1628 1628 1630 1630 1630 1627 1629 1627 1630 
N3 3886 3886 3882 3882 3882 3886 3883 3884 3882 
Cl 4914 4913 4917 4917 4918 4914 4917 4909 4917 
C2 3701 3700 3696 3696 3696 3701 3696 3697 3696 
C3 1384 1384 1384 1384 1384 1384 1384 1383 1384 
Hi 6531 6537 6444 6408 6630 6559 6577 6563 6627 
H2 4415 4407 4311 4286 4377 4423 4396 4433 4392 
H3 384 400 231 239 362 423 381 363 360 

^The standard deviations for carbon and nitrogen are ca. 
10"^. For hydrogen they are ca. 3*10"^. 
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Table III.3b. RMS amplitudes of vibration^ ( A )  for atoms in 
1,2,3-triazine 

Atom 123456789 

0.14 
0.14 
0.14 
0.14 
0.13 
0.14 
0.09 
0.04 
0.05 

^Standard deviations for the hydrogens are ca. 6*10-2. 

Table III.3c. Anisotropic thermal parameters® ( A ,  10-3) for 
atoms in 1,2,3-triazine 

Uii 1 2 3 4 5 6 7 8 9 

N1 18.8 19.0 18.3 18.1 18.0 18.2 18.0 26.1 18.0 
N2 16.0 16.4 16.4 16.2 16.5 15.7 16.5 24.1 16.5 
N3 13.2 13.6 12.7 12.5 12.4 11.9 12.5 16.5 12.4 
CI 14.2 14.9 14.6 14.3 14.5 13.6 14.4 18.6 14.5 
C2 12.8 13.5 13.2 12.9 13.1 12.2 13.2 15.7 13.1 
C3 12.5 13.2 13.5 13.3 13.6 13.0 13.7 15.1 13.6 

"22 1 2 3 4 5 6 7 8 9 

N1 24.7 25.0 24.8 24.6 26.0 25.0 25.8 20.4 26.1 
N2 22.6 22.9 23.5 23.3 24.3 23.1 24.0 20.2 24.3 
N3 25.3 25.6 25.8 25.6 26.8 25.7 26.6 23.0 26.8 
CI 23.5 24.4 24.8 24.6 25.7 24.1 25.6 23.8 25.7 
C2 19.3 20.2 19.8 19.5 20.4 18.8 20.2 18.0 20.5 
C3 20.9 21.6 21.7 21.4 22,8 22.6 22.7 22.4 22.8 

®U»(1/2^2) fi G*, where the temperature factor is of the 
form expl(k 0 k''^)/( 4) ]. ^Standard deviations are ca. 
3 * 1 0 - 3 .  

Nl 0.14 0 .14 0.14 0 .14 0. 14 0 .14 0. 14 0.16 
N2 0.14 0 .14 0.14 0 .14 0. 14 0 .14 0. 14 0.16 
N3 0.14 0 .14 0.14 0 .14 0. 14 0 .14 0. 14 0.15 
CI 0.13 0 .14 0.14 0 .14 0. 14 0 .13 0. 14 0.15 
C2 0.13 0 .14 0.13 0 .13 0. 13 0 .13 0. 13 0.15 
C3 0.13 0 .14 0.14 0 .13 0. 14 0 .13 0. 14 0.15 
Hi 0.06 0 .08 0.11 0 .13 0. 09 0 .08 0. 09 0.04 
H2 0.05 0 .08 0.08 0 .11 0. 04 0 .04 0. 05 0.05 
H3 0.07 0 .09 0.04 0 .07 0. 05 0 .06 0. 05 0.07 



www.manaraa.com

O O n 3 Z 3 C O O O 3 Z 3 w Ni H* eu to H* to eu to H* eu to M 
w 

a\ en --4 o\ -«j a\ 00 vo 00 vo 
h* 

tn en en <J\ -j m VO o H» •ĉ  
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•Ĉ  a\ o\ eu en 3 
9
 
1
 vo VO 00 

M M H* M M M M H» (-» to to I-» 
H» eu eu 00 lU VO VO CD M to VO 

vo 
eu K) a\ en en M 7

 
7
 
8
 Ul to •Ck 

C 
w 
w 

M 

W 

Ul 

en 

00 

VD 

H 
m o* 
H* 
(D 

Ul 
O 

O 
o 
3 
rr 
M-
3 
C 
m 
a 

•Ck 
A. 



www.manaraa.com

45 

Table III.4a. Comparisons between trials for 1,2,3-triazine. 
Percent differences® of the atomic coordinates 

X 1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

Nl 0.00 0.00 0.07 0.04 -0.01 0.00 0.04 0.00 
N2 0.00 0.00 -0.04 -0.03 0.00 0.00 -0.06 0.00 
N3 0.00 0.00 -0.05 -0.06 0.00 0.00 -0.04 0.00 
CI 0.00 0.00 0.05 0.04 -0.01 0.00 0.01 0.00 
C2 0.00 0.00 —0 .02 -0.02 0.00 0.00 -0.05 0.00 
C3 0.00 0.00 0.04 0.02 0.00 0.00 -0.14 0.00 
HI -0.09 -0.29 —0 .22 0.28 0.57 0.31 0.10 0.05 
H2 0.26 -0.87 -0.77 -1.33 0.12 -1.41 -0.94 -0.09 
H3 -0.27 -1.21 —2.08 -1.13 1.25 -0.54 -1.37 0.30 
AVE -0.01 —0.26 -0.34 -0.24 0.21 —0 .18 -0.27 0.03 

y 1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

Nl 0 .03 0. 00 -0 .03 0. 00 0 .00 0. 00 0.00 0 .00 
N2 0 .00 -0. 04 -0 .08 0. 00 0 .04 0. 00 0.00 0 .00 
N3 0 .00 0. 00 0 .09 0. 14 0 .00 0. 00 0.09 0 .00 
CI 0 .05 0. 00 -0 .15 -0. 05 0 .05 0. 00 -0.15 0 .00 
C2 0 .04 0. 00 -0 .08 -0. 08 -0 .04 0. 00 -0.08 0 .00 
C3 0 .03 0. 00 0 .00 0. 03 0 .00 0. 00 0.10 0 .00 
HI 0 .06 2. 09-•15 .21 2. 11 14 .89 -0. 39 -0.56 -0 .22 
H2 0 .33 -0. 28-•15 .44 -3. 05 10 .84 -1. 51 -1.97 -0 .21 
H3 0 .12 -0. 33 -9 .97 —2. 16 7 .86 0. 25 -1.17 0 .46 
AVE 0 .07 0. 16 -4 .54 -0. 34 3 .74 -0. 18 -0.41 0 .00 

2 1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

Nl 0.00 0.27 1 .60 1.60 -0.27 0.00 1.07 0.00 
N2 0.00 0.00 0 .12 0.18 0.00 0.06 0.18 0.00 
N3 0.00 0.00 -0 .10 -0.10 0.00 -0.03 —0.05 0.00 
CI 0.02 0.00 0 .06 0.08 0.02 0.02 0.18 0.02 
C2 0.03 0.00 -0 .14 -0.14 0.00 0.00 —0.03 0.00 
C3 0.00 0.00 0 .00 0.00 0.00 0.00 0.07 0.00 
Hi -0.09 0.56 -1 .35 1.07 2.81 0.80 1.01 0.05 
H2 0.18 0.58 -2 .41 -1.05 1.51 -0.43 -1.28 -0.34 
H3 -4.17 -3.46-•66 .23-16.85 36.19 -5.25 — 0.28 0.55 
AVE -0.45 -0.23 -7 .61 -1.69 4.47 -0.54 0.10 0.03 

^Percent difference (A:B)=100*(A-B)/A. 
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Table III.4b. Comparisons of trials for 1,2,3-triazine. 
Percent differences of the rms amplitudes of 
vibration 

Atom 1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

N1 —0.82 0.58 -0.74 1.20 -0.02 0. 07 -9. 01 -0. 01 
N2 —0 « 85 0.55 1.00 1.29 0.44 -0. 07 -10. 57 -0. 01 
N3 -1.04 0.63 -0.52 1.50 -0.20 0. 03 -7. 89 0. 01 
CI -2.41 0.83 2.14 2.79 0.21 -0. 12 —6 • 94 -0. 02 
C2 -2.18 0.91 0.46 2.18 0.01 0. 05 -9. 63 0. 01 
C3 -2.11 0.86 1.11 1.60 0.23 -0. 14 -8. 18 —0 « 01 
HI -30.76 -14.96 45.97 15.51 -27.67 0. 16 53. 11 0. 73 
H2 -56.28 -35.69 30.81 -2.25 -75.30 -20. 56 -21. 29 2. 85 
H3 -23.30 -74.78 -81.96 -9.68 22.76 0. 16 -40. 54 10. 76 

N» -0.90 0.59 -0.08 1.33 0.07 0. 01 -9. 16 0. 00 
ca -2.23 0.86 1.24 2.19 0.15 -0. 07 —8. 25 0. 00 
H® -36.78 -41.81 -1.73 1.20 -26.74 -6. 75 —2. 91 4. 78 

^Average percent difference for each atom type. 

Table 111.4c. Comparisons between trials for 1,2,3-triazine. 
Percent differences of the anisotropic 
thermal parameters 

Uxi 1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

Nl -1.06 1.09 -2.73 -1.11 -1.67 0.00 -45.00 0.00 
N2 -2.50 1.22 2.44 4.85 0.61 0.00 -46.06 0.00 
N3 -3.03 1.57 -3.94 4.03 -2.42 -0.81 -33.06 0.00 
CI -4.93 2.05 2.74 6.21 -0.69 0.69 -28.28 0.00 
C2 -5.47 2.27 3.03 6.87 -0.76 -0.76 -19.85 0.00 
C3 -5.60 1.48 7.41 4.41 0.74 -0.74 -11.03 0.00 
AVE -3.77 1.62 1.49 4.21 -0.70 -0.27 -30.55 0.00 
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Tabl* 111.4c. Continued 

U22 1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

Nl -1.21 0.81 0.40 3.85 4.62 0.77 21.54 -0.38 
N2 -1.33 0.85 3.83 4.94 3.29 1.23 16.87 0.00 
N3 -1.19 0.78 1.94 4.10 3.73 0.75 14.18 0.00 
CI -3.83 0.81 5.24 6.23 3.50 0.39 7.39 0.00 
C2 —4.66 1.52 2.53 7.84 2.94 0.98 11.76 -0.49 
C3 -3.35 1.38 3.69 0.88 4.82 0.44 1.75 0.00 
AVE -2.60 1.02 2.94 4.64 3.82 0.76 12.25 -0.15 

U33 1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

Nl -2.01 1.02 -1.53 5.67 -1.03 0.00 -7.22 0.00 
N2 -1.90 0.92 2.76 0.90 2.25 0.00 -21.17 0.00 
N3 -2.29 0.93 -1.87 1.40 0.47 0.47 -20.47 0.00 
CI -4.97 1.07 3.21 4.26 0.53 0.00 -13.30 0.53 
C2 -3.05 2.02 0.51 2.54 -0.51 0.00 -16.24 0.00 
C3 -3.05 1.51 1.01 5.56 -0.51 -0.51 -11.62 0.00 
AVE -2.88 1.25 0.68 3.39 0.20 -0.01 -15.00 0.09 

U12 1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

Nl —0.62 0.68 -8.78 7.09 -4.96 0.71 3.55 0.00 
N2 -0.59 0.56 5.06 1.62 3.78 0.54 -26.49 0.00 
N3 —2.00 0.72 -7.91 5.19 -2.96 0.74 1.48 0.00 
CI -5.22 1.47 1.47 2.94 0.00 0.74 -14.71 0.00 
C2 -3.31 2.07 -4.14 4.26 -2.84 0.71 -10.64 -0.71 
C3 -3.85 1.77 7.96 1.75 0.88 0.00 8.77 0.88 
AVE —2.60 1.21 -1.06 3.81 -1.02 0.57 -6.34 0.03 

Ul3 1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

Nl -1.06 0.00 3.09 5.66 8.49 0.94 33.02 0.00 
N2 -1.23 1.14 7.95 7.37 7.37 2.11 30.53 0.00 
N3 -2.22 0.00 4.26 2.91 8.74 1.94 19.42 0.00 
CI -3.37 1.06 5.32 7.14 4.08 1.02 11.22 0.00 
C2 -4.69 2.90 7.25 9.59 5.48 1.37 41.10 0.00 
C3 -2.63 1.22 7.32 4.49 7.87 1.12 25.84 0.00 
AVE -2.54 1.05 5.86 6.19 7.00 1.42 26.85 0.00 
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Table III.4c. Continued 

"23 1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

N1 0.00 0.00 -2.67 5.19 2.60 0.00 28.57 0.00 
N2 -1.49 0.00 2.90 5.48 5.48 2.74 0.00 1.37 
N3 -2.63 0.00 0.00 3.75 5.00 1.25 6.25 0.00 
CI -2.67 1.30 2.60 2.53 2.53 0.00 7.59 0.00 
C2 -5.45 1.67 8.33 14.52 3.23 1.61 50.00 0.00 
C3 -1.54 1.41 8.45 6.76 4.05 1.35 27.03 0.00 
AVE -2.30 0.73 3.27 6.37 3.81 1.16 19.91 0.23 

Initial Structure Refinement 

The first stage of any refinement process is to obtain 

the approximate structure from a standard refinement. The 

initial atomic positions were obtained from a direct methods 

approach^®. The results from the standard crystallographic 

refinement (Trial 2) are given in Tables III.3, the bond 

distances and angles are listed in Tables III.5, and the 

pertinent statistical analysis results are given in Tables 

III.7 and III.8. 

The refinement proceeded without difficulty. The 

hydrogen atoms (as well as bond peaks) were found from 

electron density difference calculations. The hydrogen 

positions and isotropic thermal parameters refined well. A 

drawing41 of the promolecule is shown in Figure III.la. 

Figure III.Id shows the hydrogen bonding and the molecular 

stacking arrangement. Figures III.lb and lll.lc are maps of 

the observed electron density. 
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Table 111.5a. Interatomic distances^ (Â) for 1,2,3-triazine 

1 2 3 4 5 6 7 8 9  

N1-N2 1.329 1.329 1.325 1.325 
N2-N3 1.332 1.332 1.328 1.328 
N3-C1 1.344 1.344 1.342 1.342 
C1-C2 1.385 1.385 1.388 1.388 
N1-C3 1.345 1.345 1.345 1.345 
C2-C3 1.382 1.381 1.380 1.380 
Cl-Hl 0.942 0.946 0.998 0.997 
C2-H2 0.964 0.967 0.976 0.945 
C3-H3 1.008 1.001 0.967 0.951 

1.325 1.329 1.329 1.329 1.325 
1.328 1.332 1.328 1.331 1.328 
1.343 1.344 1.343 1.341 1.343 
1.387 1.385 1.387 1.384 1.387 
1.345 1.346 1.345 1.341 1.345 
1.380 1.381 1.380 1.379 1.380 
0.976 0.957 0.947 0.944 0.973 
0.968 0.951 0.942 0.969 0.972 
1.008 1.009 0.995 1.006 1.008 

*The standard deviations for bonds not involving hydrogen 
are ca. 10"^. Bonds involving hydrogen are ca. 10~2. 

Table III.5b. Bond angles® {") for 1,2,3-triazine 

1 2 3 4 5 6 7 8 9 

N2N1C3 119 .5 119 .5 119. 6 119 .6 119. 6 119. 4 119. 6 119. 4 119. 6 
N1N2N3 121 .6 121 .6 121. 7 121 .7 121. 7 121. 7 121. 7 121. 5 121. 7 
N2N3C1 119 .4 119 .4 119. 7 119 .7 119. 7 119. 4 119. 7 119. 4 119. 7 
N3C1C2 122 .2 122 .2 121. 8 121 .8 121. 8 122. 2 121. 8 122. 3 121. 8 
N3C1H1 115 .0 114 .8 113. 3 111 .7 115. 8 115. 2 116. 1 115. 1 115. 9 
C2C1H1 122 .8 123 .0 124. 5 125 .9 122. 3 122. 7 122. 1 122. 6 122. 2 
C1C2C3 115 .2 115 .1 115. 3 115 .3 115. 3 115. 1 115. 3 115. 0 115. 3 
C1C2H2 125 .0 125 .1 119. 0 119 .1 124. 3 124. 5 124. 0 123. 9 124. 1 
C3C2H2 119 .8 119 .7 124. 9 124 .8 120. 4 120. 3 120. 7 121. 1 120. 6 
N1C3C2 122 .2 122 .2 122. 0 122 .0 122. 0 122. 2 122. 0 122. 4 122. 0 
N1C3H3 114 .8 115 .2 115. 8 115 .1 115. 5 115. 3 115. 8 113. 9 115. 9 
C2C3H3 122 .9 122 .6 121. 5 122 .3 122. 4 122. 3 122. 1 123. 6 122. 0 

®The standard deviations for angles not involving 
hydrogen are ça. 7*10"^. For angles involving hydrogen they 
are ca. 8*10"^. 
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Table III.6a. Comparisons of trials for 1,2,3-triazine. 
Percent differences of the interatomic 
distances 

1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

N1-N2 —0.02 -0 .01 -0. 32 -0.26 0 .02 0.00 -0. 29 0.00 
N2-N3 —0.02 0 .00 -0. 29 -0.28 0 .02 -0.02 —0. 23 0.00 
N3-C1 0.03 0 .00 -0. 11 -0.11 0 .01 0.00 0. 14 0.00 
C1-C2 -0.01 0 .01 0. 22 0.14 -0 .04 -0.01 0. 24 -0.01 
N1-C3 0.00 0 .00 -0. 06 -0.10 0 .00 0.00 0. 27 0.00 
C2-C3 0.04 0 .01 -0. 10 -0.07 0 .02 0.02 0. 09 0.00 
Cl-Hl -0.34 0 .17 5. 61 1.96 -2 .27 3.02 3. 32 0.33 
C2-H2 -0.31 3 .15 1. 23 1.78 -0 .77 2.72 -0. 06 -0.35 
C3-H3 0.68 1 .66 -4. 29 -0.04 4 .13 1.33 0. 19 0.07 
AVE 0.01 0 .55 0. 21 0.33 0 .12 0.79 0. 41 0.00 

Table III.6b. Comparisons of trials for 1,2,S^triazine. 
Percent differences of the bond angles 

1:2 3:4 3:1 5:6 5:3 5:7 5:8 5:9 

N2-N1-C3 0.00 0 .00 0. 08 0 .13 0. 01 0. 00 0 .12 0. 00 
N1-N2-N3 0.01 0 .01 0. 03 -0 .02 -0. 01 0. 01 0 .11 0. 01 
N2-N3-C1 0.02 -0 .01 0. 24 0 .23 -0. 01 0. 00 0 .22 0. 00 
N3-C1-C2 -0.03 0 .01 -0. 34 -0 .30 0. 02 0. 01 -0 .39 0. 00 
N3-C1-H1 0.17 1 .36 -1. 48 0 .58 2. 19 -0. 21 0 . 66 -0. 10 
C2-C1-H1 -0.14 -1 .11 1. 32 -0 .29 — 1 , 77 0. 18 -0 .25 0. 10 
C1-C2-C3 0.02 -0 .01 0. 11 0 .12 0. 00 -0. 01 0 .26 0. 00 
C1-C2-H2 -0.11 -0 .06 -5. 00 -0 .14 4. 25 0. 26 0 .36 0. 19 
C3-C2-H2 0.08 0 .09 4. 15 0 .11 -3. 79 -0. 23 -0 .58 -0. 20 
N1-C3-C2 —0.02 0 .00 -0. 11 -0 .14 0. 00 0. 00 -0 .29 0. 00 
N1-C3-H3 -0.29 0 .66 0. 88 0 .16 -0. 27 -0. 28 1 .40 -0. 35 
C2-C3-H3 0.28 -0 .67 -1. 19 0 .09 0. 75 0. 26 -1 .00 0. 32 
AVE 0.00 9 .02 -0. 11 0 .04 0. 11 0. 00 0 .05 0. 00 
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Table 111.7a. ^w (10-3) in reciprocal space zones 

ALL® hOO OkO 001 Okl hOl hkO 

#lb 2032 9 7 7 128 106 133 
#2 644 6 5 5 54 47 58 
#3 1027 2 2 1 48 41 53 

1 #1 61 67 171 52 72 62 61 
2 #1 61 64 163 57 75 63 59 
3 #1 76 63 398 80 97 68 69 
3 «2 46 32 178 2636 42 49 44 
4 #1 72 58 391 78 97 73 63 
4 #2 46 30 171 2681 41 48 44 
5 #1 62 52 208 61 81 60 84 
5 #2 46 26 111 2730 38 49 44 
6 #1 56 79 175 52 68 60 63 
7 #1 60 55 197 57 84 61 68 
7 #2 46 26 107 2782 38 49 44 
8 #3 48 57 159 49 51 52 55 
9 #1 63 52 208 64 82 60 84 
9 #2 46 26 108 2730 38 49 44 

®ALL implies that all reflections were used. 

^Number of reflections in each zone. They are dependent 
on the range of sin(0)/X and correspond to total, high-order, 
low-order data respectively. 

In any standard crystallographic refinement the entire 

dataset is used. Since we are using a promolecule model it 

is not meaningful to place much significance on the 

statistical analysis or the atomic parameters in an absolute 

sense. 

The first test of the standard refinement is to compare 

the results using HF scattering factors (as in Trial 2) and 

the results using SCF scattering factors (as in Trial 1). In 
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Table III .7b. ®w® (10 -3) in sin(0)/X ranges 

#b 2 16 60 112 183 271 361 463 559 5 
n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1 269 64 62 68 67 63 50 49 63 27 
2 254 59 62 68 66 65 48 47 64 37 
3 628 52 76 81 92 92 49 40 54 21 
4 614 63 84 85 78 80 47 40 54 22 
5 297 42 70 61 72 76 52 40 54 30 
6 279 56 62 59 58 55 48 45 57 30 
7 281 49 68 63 63 72 50 40 53 29 
8 252 42 46 46 47 48 
9 302 50 69 61 72 76 52 40 53 31 

is calculated for the range [n-0.1, n) where 
n>sin(0)/X. 

^Number of reflections in the range [n-0.1, n). 

Table III. 7c. Number of reflections with ( |E|-|F| ) in the 
range ( (n-•l)(r(E) , nff(E)] 

n= 1 2 3 4 5 6 7 8 9 >10 

1 1493 383 79 44 14 7 2 5 1 4 
2 1503 383 72 36 17 9 3 5 1 3 
3 1477 351 95 42 30 10 12 7 3 5 
3a 912 108 7 
4a 916 104 7 
5 1475 371 107 46 18 6 2 3 1 3 
5a 920 100 7 
6 1540 350 80 31 15 8 5 3 
7 1514 356 88 35 16 13 4 3 2 1 
7a 923 98 6 
8° 411 156 45 20 4 6 0 2 
9 1473 375 104 47 16 6 3 4 1 3 
9a 921 99 7 

^High-order data only. 

^Low-order data only. 
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Table III.8. Refinement results for 1,2,3-triazine 

Trial LSE ERF 0(p) Scale 

1 3428 1 .3207 0. 2651 5 .05(1) 
2 3407 1 .3167 0. 2659 5 .33(1) 
3a 429 0 .6647 0. 1461 5 .19(5) 
3 5208 1 .6279 0. 2883 
4a 425 0 .6613 0. 1459 5 .29(5) 
4 4774 1 .5587 0. 2831 
5» 429 0 .6643 0. 1456 5 .22(5) 
5 3572 1 .3544 0. 2847 
6 2818 1 .1829 0. 2703 5 .01(1) 
7a 425 0 .6612 0. 1453 5 .22(5) 

3296 1 .2912 0. 2845 
8b 1291 1 .4362 0. 1649 5 .27(2) 
9a 429 0 .6643 0. 1455 5 .22(5) 
9 3549 1 .3399 0. 2860 

®High-order data only. 

^Low-order data only. 

Tables III.4 we find little difference in the atomic 

coordinates and a general decrease (SCF values are smaller) 

in the vibrational parameters. 

Examination of Figure B.l shows that the SCF scattering 

factor is a more diffuse function than the HF scattering 

factor. In real space, this translates into the SCF carbon 

atom being more localized which would indicate that larger 

vibrations for the SCF atoms are expected so that their 

electron density will match the electron density calculated 

by the HF atoms. 
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Figure III.la. Drawing of the 1,2,3-triazine promolecule 
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HI 

Figure III.lb. Contour map of observed electron density for 
1,2,3-triazine. CI-2.Oe'/A^. See Appendix E 
for explanation of map features for this and 
all other contour maps 
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Figure III.le. Horizontal cross-section of Figure III.Ib. 
Crosses represent, from left to right, Ni, 
map center, CI, and HI. Cl"2.0e~/A^ 

The scale factor can however raise the average of the 

scattering factor curve for the HF atoms above the SCF 

average. This then is compensated for by an increase in the 

HF vibrational parameters which essentially flattens the 

scattering factor curves. The hydrogen atoms' thermal factor 

decrease can be explained as a compensation for errors and 

thus are not meaningful. As might be expected, no 

significant differences in bond distances or angles are seen 

in Tables III.6. 

In light of these results, it is expected that the scale 

factor and the vibrational parameters will be the main 

difference between structures refined using SCF and those 

using HF scattering factors. While the LSE is lower when 

using the HF values, it is not proper to speculate that they 
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Figure III.Id. View of hydrogen bonding for 1,2,3-triazine 



www.manaraa.com

58 

are the correct ones to use. This is unique to the 

promolecule model used and stems from the HF atoms being more 

diffuse. Upon chemical bonding the electron density itself 

becomes more delocalized over the molecular region and thus 

an atom which is more diffuse will be able to model the 

chemical bonding better. This argument is born out by Table 

III.7b where in the high-order (core electron) regions are 

actually lower for the Trial 1 promolecule. 

High-Order Cutoff 

The next step is to determine the high-order data cutoff. 

This may be done using the Trial 1 structure. The procedure 

calls for the bond and lone pair electron density peak 

heights to be plotted versus the sin(0)/X maximum. The peaks 

heights for all peaks (including atoms) should increase as 

one increases the cutoff. By finding a point on the plot 

above which the bond or lone pair electron density peak 

height is not changing, one locates the lower sin(9)/X value 

for a high-order refinement. In this high-order data region 

only the core electrons contribute significantly to the 

structure factors (this is approximately true for both the 

experimental structure and the promolecule model). 

As shown Figure III.2 there is no such point for this 

dataset. This means that the resolution is too low and a 

decoupling of the core electrons from the none-core electrons 

is not completely possible. In this work a high-order cutoff 
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Figure III.2. Plot of bond peak height versus sin(8)/X maximum for 
1,2,3-triazine and 9-tert-butylanthracene 
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was chosen as being sin(e)/X-0.70Â~^ and it is assumed that 

the bonding and lone pair electron density will not greatly 

influence the X-type parameters obtained from a high-order 

refinement. This cutoff yielded a data/variable ratio of 73 

for the high-order refinement of the X-type parameters. 

High-Order Refinement 

Trials 3 and 4 are the structures resulting from a high-

order, spherical-atom refinement using SCF and HF values 

respectively. The hydrogen parameters were obtained from a 

refinement against all data. This was necessary since the 

thermal parameters became negative when only high-order data 

were used (this is generally true, independent of the data 

quality, since the hydrogen atoms' loosely bound electron 

will not contribute significantly to the total scattering at 

high angles in any structure). 

Comparing the results of Trials 3 and 4 one sees little 

differences in the positional parameters, the interatomic 

distances, and the bond angles. The thermal parameters 

however decreased for the carbons and nitrogens and increased 

for the hydrogens. The hydrogen atoms may again be explained 

as a compensation for errors. 

The carbon and nitrogen atoms' thermal factor increase is 

explained by examining the combination of the scale factor 

and the thermal parameters. Taking the high-order range to 

be from 0.7 to 0.9 with an average of 0.8 we find that the 
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the ratio of the scattering factor values for carbon at 0.8 

Is 1.367(SCF)/1.323(HF)-1.03. From the scale factor ratio 

(5.29(HF)/5.19(SCF)»1.02) we see that the scale factor 

difference is a compensation for the difference of the 

scattering factors in this range. Taking the slopes of the 

scattering factors in this range we find -0.985 for the SCF 

carbon scattering factors and -1.036 for the HF scattering 

factors. Thus the temperature factors are expected to be 

larger. One might also argue that, since the SCF atoms' core 

regions are more localized, they would be expected to have 

larger vibrations. 

High-Order Versus Standard Refinement 

Trials 1 and 3 permit a comparison of parameters obtained 

by standard refinement with those from a high-order 

refinement. As seen in Tables III.4a and III.4b there are 

few systematic differences in the positional and average 

vibrational parameters. Table III.4c shows that the SCF 

atoms have larger values of U22» U13, and U23. The off-

diagonal components are mainly directional in nature. The 

larger U22 term indicates that the vibrations are greater in 

the b* direction, which is approximately perpendicular to the 

molecular plane. 

The bond distances are slightly shorter for the SCF 

values and no tendencies are noted for the bond angles. One 

of the main reasons behind a high-order refinement is to 
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obtain more accurate parameters. Table III.6a reveals little 

change which reflects the fact that the electronic 

environment around the atomic positions is fairly symmetric. 

The p-n orbitals balance themselves above and below the 

molecular plane, and the bonding and lone pair electrons 

balance each other within the molecular plane. Thus the 

standard refinement does produce reasonably accurate 

positional information in this case. 

The average rms amplitudes of vibration for Trial 1 are 

similar to those for Trial 3; this is unexpected but can 

again be attributed to the scale factor compensating for 

errors in the Trial 1 structure. 

Analysis of the residuals in Tables III.7 points out the 

problem of indiscriminate use of the residuals. The R^(ALL) 

value being lower for Trial 1 has no meaning since it is from 

a conceptually incorrect model. A more accurate measure of 

the model's quality can be obtained by comparing in the 

high-order range. It is seen in Table III.7b that in the 

sin(0)/X range of [0.7,0.9) is lower for Trial 3. This 

indicates that Trial 3 has more accurate X-type parameters 

(which are the main contributors at high angles). 
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Valence Orbital Refinement 

Using the structure from Trial 3 as a starting point, the 

valence (p) orbitals were refined in Trial 5. The refinement 

procedure alternated between high-order refinement of the X-

type parameters and refinement of the Y-type parameters using 

all the data, valence information includes the orbital 

occupancies and the "orientation" of the p-orbitals. A 

summary of the valence orbital information is given in Tables 

III.9. 

Figures III.3 reveal the directions to which the orbitals 

refine. The valence shells tend to have a single orientation 

relative to the atoms. One orbital type is tangential to the 

ring and models the ring or-bonding. The sum of this type of 

orbital has roughly the same shape as that of the ring. The 

second type is radially oriented to the ring and models the 

lone pair or hydrogen bond electron density. The third 

orbital models the p-n orbital and lies perpendicular to the 

molecular plane. Maps of these three orbital types, weighted 

by their electron occupancies, as well as there sum are given 

in Figures III.4. 

An examination of these maps reveals that the individual 

valence orbitals as well as their sum roughly approximate the 

chemical C2 axis. This, and the fact that at least one of 

the lobes on each orbital accounts for parts of the bonding 

or lone pair density, indicates that the results from this 

fit are physically meaningful. 
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In Tables III.9 the three orbital types correspond to: 1) 

Yl(Nl), Yi(N2), Y3(N3), Y2(C1), T2(C2), and YgfCS), 2) 

Y2(N1), Y3(N2), T2(N3), YgfCl), Y3(C2), and YgfCS), 3) 

YglNl), Y2(N2), Yi(N3), YjfCl), Yi(C2), and TjfCS). Table 

III.9f shows the Trial 5 orbitals rotated to a local atomic 

coordinate systems. It is interesting to note that the type 

3 orbitals (modeling the p-n) have lower occupancies than do 

the other types, the type 2 carbons are consistently lower 

than the type 2 nitrogen orbitals, and all type 1 orbitals 

are approximately equal. This internal consistency is an 

indication of the reasonable quality of the results. 

Since the core electron scattering can not be totally 

disassociated from the deformation density scattering in this 

case, the X-type parameters were refined again after the 

orbitals were oriented. This allows one to account for as 

much of the deformation density (the valence part) as 

possible without going to a molecular model (a quick check 

indicated that the valence electrons contributed about 2% of 

the total scattering in the sin(6)/X range (0.7,0.8)). 

Comparing the new high-order refinement X-type parameters 

with those of Trial 4 (whose structure consisted of 

spherically averaged atoms) shows little difference between 

the non-hydrogen coordinates and the rms amplitudes of 

vibration. The U22» U13, and U23 components of the 

anisotropic thermal parameters are systematically larger foe 

Trial 5. This again indicates a larger vibrational motion 
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Table III.9a. Trial 5 orbital parameters^ for 1,2,3-triazine 

Atom i Xib U(Px,i) U(Py,i) U(Pz,i) Aejc 

Nl 1 1.088 0.853 0.490 0.179 0.09 
2 1.463 0.16.6 -0.580 0.798 0.46 
3 0.449 0.494 -0.651 -0.576 -0.55 

N2 1 1.034 -0.757 0.415 -0.506 0.03 
2 0.595 -0.109 0.683 0.722 -0.40 
3 1.371 0.645 0.601 -0.472 0.37 

N3 1 0.546 -0.189 0.697 0.691 -0.45 
2 1.442 0.370 -0.602 0.708 0.44 
3 1.012 0.910 0.389 -0.144 0.01 

CI 1 0.309 -0.133 0.779 0.612 -0.36 
2 0.954 0.414 -0.517 0.749 0.29 
3 0.737 0.900 0.353 -0.254 0.07 

C2 1 0.309 -0.275 0.688 0.672 -0.36 
2 1.103 0.325 -0.591 0.738 0.44 
3 0.589 0.905 0.421 -0.061 — 0.08 

C3 1 0.108 -0.184 0.812 0.553 -0.56 
2 1.185 -0.201 -0.582 0.788 0.52 
3 0.707 0.962 0.034 0.270 0.04 

aYi-U(Px,i)*(Pxl+U(Pv,i)*(Py)+U(Pz'i)*(Pz) and 
p(valence)-Ei X i 

^Standard deviations for the orbital occupancies are ca. 
5*10 - 2 .  

CNumber of electrons gained relative to the spherical 
atom's orbitals. 
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Table III.9b. Trial 6 orbital parameters for 1,2,3-triazine 

Atom i Xi U{Px f1) U(py,i) U(Pz,i) ûeï 

Ni 1 1.000 0.532 0.796 0.290 0.00 
2 1.478 0.280 —0.488 0.827 0.48 
3 0.522 0.799 -0.358 -0.483 -0.48 

N2 1 0.987 -0.611 0.497 -0.617 -0.01 
. 2 0.737 -0.232 0.632 0.739 -0.26 
3 1.276 0.757 0.595 -0.271 0.28 

N3 1 0.974 0.707 0.687 0.167 -0.03 
2 1.410 0.380 -0.568 0.730 0.41 
3 0.616 0.596 -0.453 -0.663 -0.38 

Cl 1 0.448 0.029 0.859 0.512 -0.22 
2 0.633 -0.761 -0.313 0.569 -0.03 
3 0.919 0.648 -0.406 0.644 0.25 

C2 1 0.940 -0.407 0.580 -0.705 0.27 
2 0.715 0.474 0.794 0.379 0.05 
3 0.345 0.780 -0.180 -0.599 -0.32 

C3 1 0.165 -0.428 0.817 0.386 -0.50 
2 1.176 -0.388 -0.552 0.738 0.51 
3 0.659 0.816 0.166 0.553 -0.01 
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Table 111.9c. Trial 7 orbital parameters for 1,2,3-triazine 

Atom i Xi U(px,i) U(py,i) U(Pz,i) Net® ûej 

N1 1 0.897 0.808 0.576 0.128 -0.31 -0.10 
2 1.360 0.267 -0.550 0.791 0.36 
3 0.437 0.526 -0.605 -0.598 -0.56 

N2 1 0.846 -0.665 0.404 -0.629 -0.31 -0.15 
2 0.595 -0.237 0.684 0.690 -0.41 
3 1.251 0.708 0.608 -0.359 0.25 

N3 1 0.489 -0.339 0.646 0.684 — 0 .42 -0.51 
2 1.273 0.344 -0.592 0.729 0.27 
3 0.822 0.876 0.482 -0.022 -0.18 

CI 1 0.212 -0.157 0.788 0.595 -0.51 -0.45 
2 0.768 0.628 -0.385 0.676 0.10 
3 0.515 0.762 0.480 -0.434 -0.15 

C2 1 0.267 -0.507 0.524 0.684 -0.24 -0.40 
2 1.053 0.339 —0.609 0.717 0.39 
3 0.443 0.793 0.596 0.131 -0.22 

C3 1 0.000 -0.255 0.797 0.548 -0.59 -0.67 
2 0.939 -0.207 -0.598 0.774 0.27 
3 0.472 0.944 0.084 0.318 -0.19 

®Net number of electrons gained from neutral atom's 
number of electrons. 
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Table IZI.9d. Trial 8 orbital parameters for 1,2,3-triazine 

Atom 1 u(Pjj/1 ) u(py/i) ufpgfi) 

Ni 1 1.489 0.203 0.837 0.508 0.49 
2 1.281 0.137 -0.538 0.832 0.28 
3 0.229 0.969 -0.099 -0.224 -0.77 

N2 1 1.337 -0.178 0.876 0.448 0.34 
2 0.636 0.590 -0.270 0.761 —0.36 
3 1.027 0.788 0.400 —0.468 0.03 

N3 1 0.426 -0.790 -0.243 0.562 -0.57 
2 1.338 0.280 -0.960 -0.021 0.34 
3 1.236 0.545 0.141 0.827 0.24 

Cl 1 0.568 -0.733 0.490 0.472 —0 .10 
2 0.683 0.113 -0.596 0.795 0.02 
3 0.749 0.671 0.636 0.381 0.08 

C2 1 0.344 -0.811 0.567 0.143 —0 .32 
2 0.640 -0.171 -0.463 0.870 -0.03 
3 1.016 0.559 0.681 0.473 0.35 

C3 1 0.289 -0.627 0.752 0.204 -0.38 
2 0.894 0.021 -0.245 0.969 0.23 
3 0.817 0.778 0.612 0.138 0.15 
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Table III.9e. Trial 9 orbital parameters for 1,2,3-triazine 

Atom i Xi U(Px,i) U(py,i) U(Pz,i) Net ûeï 

NI 1 1.124 0.876 0.445 0.185 0.07 0.12 
2 1.492 0.133 -0.592 0.795 0.49 
3 0.450 0.463 -0.672 -0.578 -0.55 

N2 1 1.014 -0.737 0.403 -0.542 0.02 0.01 
2 0.598 -0.136 0.697 0.704 -0.40 
3 1.406 0.662 0.593 -0.459 0.41 

N3 1 0.536 -0.192 0.697 0.691 —0.02 —0.46 
2 1.435 0.373 -0.599 0.708 0.43 
3 1.011 0.908 0.394 -0.145 0.01 

Cl 1 0.299 -0.143 0.787 0.600 -0.03 -0.37 
2 0.936 0.372 -0.519 0.769 0.27 
3 0.736 0.917 0.333 -0.218 0.07 

C2 1 0.307 -0.185 0.727 0.661 0.05 -0.36 
2 1.142 0.309 -0.596 0.741 0.48 
3 0.603 0.933 0.341 -0.115 —0.06 

C3 1 0.117 -0.166 0.806 0.568 -0.09 -0.55 
2 1.125 -0.131 -0.589 0.797 0.46 
3 0.670 0.977 0.058 0.203 0.00 
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Table III.9£. Trial 5 orbital parameters for 1,2,3-triazine. 
Rotated^ to local coordinate system and sorted 
according to type 

Atom i Xi a^ b c 

Nl 1 1.088 0.552 0.252 -0.795 
2 1.463 0.034 -0.959 -0.281 
3 0.449 -0.833 0.128 -0.538 

N2 1 1.034 —0.026 -0.413 0.910 
2 1.371 0.240 0.882 0.407 
3 0.595 0.971 -0.229 -0.076 

N3 1 1.012 0.278 0.525 0.805 
2 1.442 ,-0.033 0.842 -0.538 
3 0.546 0.960 -0.123 -0.251 

CI 1 0.954 0.061 0.881 0.470 
2 0.737 0.183 -0.473 0.862 
3 0.309 0.981 0.033 -0.190 

C2 1 1.103 -0.002 0.044 0.999 
2 0.589 0.344 -0.938 0.042 
3 0.309 0.939 0.344 -0.013 

C3 1 1.185 0.007 -0.420 0.907 
2 0.707 0.256 -0.876 -0.408 
3 0.108 0.967 0.235 0.102 

®The actual signs of the orbital direction vectors may be 
changed without affecting the interpretation. 

^The local reference system consists of a) perpendicular 
to the molecular plane, b) radially outward from the center, 
and c) tangential to the ring. 
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Table HI.10.. Comparisons of trials for 1,2,3-triazine. 
Angles between wavefunctions (Yi) 

Atom i 5:6 5:7 5:8 5:9 

Nl 1 26.45 6.30 47.61 2.89 
2 8.57 6.06 3.47 2.01 
3 25.00 3.45 47.70 2.15 

N2 1 11.52 8.82 74.26 2.46 
2 7.74 7.62 72.43 2.08 
3 13.22 7.44 14.19 1.30 

N3 1 62.55 9.09 68.38 0.11 
2 2.36 1.98 48.20 0.13 
3 62.49 9.03 64.46 0.30 

CI 1 11.88 1.76 39.76 0.98 
2 74.17 15.02 18.09 2.69 
3 73.92 14.94 42.93 2.51 

C2 1 87.87 16.35 44.85 5.66 
2 92.04 1.77 30.62 0.94 
3 48.18 16.25 40.18 5.73 

C3 1 16.99 4.17 32.98 1.42 
2 11.26 1.26 25.57 4.04 
3 19.84 4.07 36.18 4.15 
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3a. Orbital direction vectors superimposed on 
promolecule drawing. CI is on the left 
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Figure III.3b. Ellipsoids representing valence orbital 
information. Principal axes correspond 
to electron occupation and have the same 
direction as the orbitals. Orientation 
identical to that of Figure III.3a 
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perpendicular to the molecular plane. In view of similar 

results obtained in the comparison of Trial 3 and Trial 1 it 

may be taken as a trend toward a more vibrationally-correct 

model. But one must also question whether this is possibly a 

compensation for the low p-n type orbital electron 

occupancies or perhaps a systematic error in the data or the 

weighting scheme. 

Conceptually the approach taken for Trials 3 and 5 are 

correct. Examination of Table III.7a reveals that, for the 

few reflections available, the OkO zone has larger residuals 

for all trial structures. The Trial 3 value of is 0.397 

whereas the value of R is 0.059. This is a direct indication 

that the weighting scheme is faulty. This direction is also 

the unique direction (similar to a cylinder axis) relative to 

the molecule and the intensities should be largest along this 

reciprocal space axis. Since R and R^^ are reasonably similar 

as a function of sin(0)/X, it is deduced that the strong 

reflections are underweighted in this dataset and that the 

vibrations perpendicular to the molecular plane are not as 

large as they appear. While this will have some effect on 

the valence occupancies of the p-n type orbitals it is 

uncertain as to the magnitude of this effect. 

The interatomic distances and bond angles show little 

variation between Trials 5 and 3. From an examination of 

Table III.7b it is obvious that, given similar X-type 

parameter values, the low angle region is modeled better by 
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the oriented orbitals than by the spherically averaged 

orbitals as would be expected. 

Figure III.5c is a total deformation density map (TDD) 

which was obtained by subtracting the spherical-atom 

promolecule (Trial 3) from the observed electron density. 

Here the bonding electron density is centered between the 

atoms and the lone pair density is directed radially outward 

from the molecule's center. There is considerable deviation 

from two-fold symmetry around the N2 and C2 atoms. The 

deformation density is also fairly pronounced. 

Figure IlZ.Sd is a chemical deformation density map (CDD) 

which was obtained by subtracting the oriented valence 

orbital atom promolecule (Trial 5) from the observed electron 

density. The features are generally less pronounced and the 

chemical two-fold axis more easily seen. The non-hydrogen 

bond peak centers are more uniform in height and are located 

inside of the internuclear vectors. This may be interpreted 

as a type of strain induced by the formation of the sigma 

bonds which is approximately the same for all atoms (actually 

slightly lower for the two N-N bonds). 

From the bond peak heights and their areas, one may 

estimate that the C-C bonds have the most electrons, the C-N 

bonds somewhat less, and the N-N bonds the least. This is in 

accord with theoretical calculations^^ on similar nitrogen 

heterobenzenes which show that the bond charge increases as 

one moves away from the nitrogen atoms. 
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Figure III.4a. Map of the calculated ring type (type 1) 
orbitale for Trial 5 in 1,2,3-triazine. 
CI-0.1e-/A3 
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Figure III.4b. Lone pair type (type 2) orbitals. Similar 
to Figure III.4a 
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Figure III.4c. p-n type (type 3) orbitals. Similar to 
Figure III.4a 
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Figure 111.4d. 0.4Â above the molecular plane. Similar to 
Figure III.4c 
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Figure III.4e. Horizontal cross-section of Figure III.4c. 
Crosses represent, from left to right, NI, 
map center, CI, and HI 

Subtracting Figure I L L.Sd from Figure 111.5c yields a map 

(Figure ILL.Se) which is essentially the difference between 

the oriented valence density and the spherically averaged 

valence density. This clearly points out the regions in 

which the oriented orbitals do model and the spherically 

averaged orbitals cannot. 

From Figures 111.5c and 5d the argument for orienting the 

orbitals^® is clearly seen. Figure III.5d is of the electron 

density changes which involve energy changes. The most 

significant features shown in Figure III.5c involves orbital 

orientation information which involves no energy 
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Figure Sum of the p-orbitals. Similar to Figure 
III.4a 
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Figure III.5a. Difference density map for Trial 5. Observed 
density minus carbon and nitrogen Is 
electrons. CI-0.5e"/A^ 
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Figure 111.5b. Difference density map for Trial 5. Observed 
density minus carbon and nitrogen Is and 2s 
electrons and the hydrogen Is electrons. 
CI-O.leVA^ 
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Figure 111.5c. Total deformation density map for Trial 5. 
Observed density minus spherical-atom 
promolecule. CI-0.1e~/A^ 
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Figure Ill.Sd. Chemical deformation density map for Trial 5. 
Observed density minus ociented-atom 
promolecule. CI"0.1e~/A^ 
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Figure III.5e. Difference between Figures lll.5d and III. 
Interpret as the electron density which is 
lost upon going to spherical atoms plus 
density changes due to atom movement 
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Figure IlI.Sf. Horizontal cross-section of Figure III.4c. 
Crosses represent, from left to right, NI, 
map center, CI, and HI 

change. Figure 111.5c may be useful for total molecular 

information but does not give the insight into molecular 

formation (and reaction) information which is available from 

Figure Ill.Sd. It is also seen, by comparing Figures 111.5c 

and III.5d, that the electron density changes which are due 

to orbital orientation are twice the electron density changes 

which are associated with chemical changes. 

By comparing the valence and deformation density shown in 

in Figure III.5b with the calculated valence orbitals in 

Figure III.4f one can see that the general features are well 

modeled, particularly where the peaks are at a maximum and in 

the regions of steep slope. 
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Figure 111.5g. Vertical cross-section of Figure III.4c. 
Crosses represent the projections of, from 
top to bottom, N2 and N3 (indistinguishable), 
map center, C3, and C2 
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Standard and Low-Order Orbital Refinement 

Given the satisfactory results from the above procedure 

it is of interest to attempt to obtain similar valence 

orbital information from a standard refinement using the 

total (moderate resolution) data which is available. It 

would also be quite useful to obtain the valence orbital 

information from low-order data only. Success using only 

low-order data would permit studies on many more compounds 

due to the greater number of low-order datasets which are 

available. 

In the standard refinement (Trial 6), the X-type 

parameters and the Y-type parameters where refined against 

the entire dataset using Trial 5 as the starting point. The 

low-order structure (Trial 8) was obtained in an identical 

manner except that only data out to sin(0)/X"O.6 (a typical 

limit to standard datasets) were used. 

The differences in the interatomic distances, atom 

coordinates, and rms amplitudes of vibration between Trials 5 

and 6 are close to the differences between Trials 3 and 1. 

Analysis of these results follow the same arguments as given 

before. It was also of interest to see if the orbital 

information would be similar to that of Trial 5. 

Table III. 10 contains the angles between the same in 

different structures. It is here that we see how poor the 

orbital orientations from Trials 6 and 8 match those from 

Trial 5. 
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Figure 111.6a. Difference density map for Trial 8. Low-
order data minus promolecule. CI"0.1e~/A^ 
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Figure III.6b. Entire data minus promolecule. Similar to 
Figure III.6a 
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It is seen that using a more accurate valence orbital 

model does not improve the atomic coordinates. It is 

concluded that using either low resolution data only or using 

a standard refinement on high resolution data yields 

incorrect results. The x-type parameters must be accurately 

determined before a useful orbital description can be 

obtained. 

It is instructional to compute the difference density 

from Trial 8. Figure III.6a shows the difference between the 

low-order data and the low-order structure; it indicates that 

the low-order structure can model the low-order data very 

well. Figure III.6b is the difference between the entire 

dataset and the low-order model. Here we conclude that, 

while the low-order model fits the low-order data very well, 

it is an incorrect procedure which fails to accurately 

determine the X-type parameters. It is also proof that a 

low-background is not a suitable criterion for determining 

the data quality or the correctness of a particular 

promolecule. 

Electron Transfer 

Trial 5 is considered ultimate promolecule in that its 

formation involves little or no energy change. There are 

other chemical concepts which might be modeled which do not 

move the promolecule into the regime of the molecular model 

and may thus yield further (albeit chemical) information in 
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the form of the promolecule's parameters. It also follows 

the concept of obtaining the very best valence (non-

deformation density) model which, since the data is not of 

high enough resolution, will allow one to obtain better X-

type parameters. 

By replacing the constraint that the number of electrons 

on each atom remains constant with the constraint that the 

total number of electrons in the molecule remains constant, 

the promolecule now embodies the concept of valence orbital 

electron transfer. 

Trial 5 served as a starting point. By changing the 

constraints and alternately refining the X and T-type 

parameters, the structure corresponding to Trial 9 was 

obtained. The net electronic charge for each atom is given 

in Table III.9e. These values show little change (1 to 2 

standard deviations in magnitude) from the promolecule model 

in Trial 5. Comparisons of the parameters for Trials 5 and 9 

show good agreement as would be expected. 

On the basis^ of their electronegativities, one would 

predict an increase in the nitrogen atoms' net charge and a 

decrease in the carbon atoms' net charge. It is taken as an 

indicator of reasonableness that none of the atoms lost or 

gained a large number of electrons. On the other hand, Nl 

and N3 are chemically equivalent and are expected to have 

similar charges. Further investigations of other compounds 
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are necessary before the significance of these results can be 

properly interpreted. 

Molecular Ionization 

Another step towards the molecular model is to remove all 

constraints on the total number of electrons, allowing the 

valence orbitals to ionize. While this is not possible as 

long as one uses the incorrect procedure of fitting the scale 

factor to all data^3,44^ it will work with this approach 

since the scale is more appropriately defined by the core 

electrons' fit to the high-order data. 

Using Trial 5 as a starting point, the constraint that 

the number of valence electrons on each atom remain constant 

was removed. The X-type parameters were refined against the 

high-order data and the Y-type parameters were refined 

against the entire dataset on alternate refinement runs. 

Each individual orbital's occupancy behaved well, having 

remained in the range [0,2] without constraint. The 

resultant structure's (Trial 7) net atomic charges are given 

in Table III.9c. It is consistent from a conceptual point of 

view that the atoms have lost some electrons to the bonding 

and lone pair regions. The scale, if not accurately 

determined, will have the effect of adding or subtracting 

charge from each atom. 
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Discussion 

For this study the data resolution was found to be lower 

than ideal and so a true high-order determination of the X-

type parameters could not be made. Since the electron 

density is blurred by lowering the resolution, it is expected 

that the results from a higher resolution study would produce 

better defined results. As is seen in a comparison of Trials 

5, 6, and 8, the primary effect of lowering the resolution is 

poorer X-type parameters. This can then have the secondary 

effect of causing incorrect orbital information to result. 

The above argument inherently assumes, as shown in Trial 

6, that the X-type parameters are obtained from a high-order 

refinement. Although it is an empirical relationship, it 

appears necessary to collect high enough resolution data in 

order to obtain good orbital information. The double 

indemnity of having only low resolution data and low accuracy 

parameters is amply illustrated by Trial 6 and Figures III.6. 

When considering the valence electron density an 

interesting relationship emerges. Decreasing the temperature 

of a crystal during data collection causes the deformation 

density to sharpen and its detail to increase. As a 

consequence of this, the reciprocal space valence scattering 

functions extend out to larger values of sin(0)/X and thus 

the available resolution in real space is increased. Put in 

another way; the more detail that exists, the more that can 

be seen. 



www.manaraa.com

96 

The data  qual i ty  in  th is  s tudy can be  c lass i f ied  as  

moderate ly  good.  The internal  agreement  factor  Rint(<l>) '  a  

measure  of  random errors  and other  errors  not  based on 

s in(0) /X,  should  be  at  most  1  for  a  very  good dataset  

intended to  produce  accurate  quant i tat ive  resul ts .  I t  i s  

d i f f icul t  to  check the  data  for  systemat ic  errors .  The 

methods  which are  commonly  used are  based on a  comparison of  

the  observed data  and the  ca lculated data .  This  approach i s  

not  appropriate  for  the  ent ire  dataset  when us ing  a  

promolecule  model .  Only  the  high-order  data  may be  properly  

tes ted  and systemat ic  errors  in  th is  range  are  eas i ly  

compensated for  by the  sca le  and thermal  parameters .  There  

i s  no correct  procedure  of  complete ly  e l iminat ing  systemat ic  

errors  from an observed dataset .  

The weight ing  schéma used in  th is  s tudy was  found to  be  

l ess  than ideal .  The weights  were  taken as  the  inverse  of  

the  variance  of  the  ref lect ion (coj^- l /a^(  F )  )  which are  der ived 

from the  larger  of  a2<I>=Zk a^{I) /n^ or  a2<I>"Ek (<I>-

I )2 / (n(n- l ) )  as  a2(F)=(e2(I )+0.0004*l2) /4 l .  I t  i s  not  

poss ib le  to  discover  the  source  of  the  error  without  access  

to  the  or ig inal  data  and the  a lgori thms for  data  reduct ion 

( i n c l u d i n g  t h e  a b s o r p t i o n  c o r r e c t i o n  w h i c h  w a s  a p p l i e d ) .  I n  

th is  case  the  improper  weight ing  contr ibuted to  the  thermal  

parameters  be ing  over ly  large  in  the  d irect ion perpendicular  

to  the  molecular  p lane .  
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The p-n (type 3) orbitals have lower occupancies compared 

to the other two orbital types. From a hybridization point 

of view one would expect sp^ hybridization and a p-n orbital. 

The hybrid orbitals would be 

hi.l//3X2s+/(2/3)X2px' (III.la) 

h2-l//3X2s-l//6X2px+l//2X2py, (III.lb) 

and 

h3-l//3X2s-V/6X2px-V/2X2py. ( III .Ic) 

The total electron density is thus 

P"(Xls)^+(hi)2+(h2)2+(h3)2+(X2pz)^ (HI «2) 

where there are 2 electrons in the is orbital, 1 in each of 

the hybrid orbitals, ai\d 1 in the 2pg orbital. 

Using the present procedure, the Is and 2s orbitals are 

considered core orbitals. Thus the direction perpendicular 

to the molecular plane already has roughly 2/3 of a 2s 

electron. The occupancy of the pg orbital will thus be much 

lower than the expected value value of 1 (recall that the 

radial part of the Is and 2p wavefunctions are nearly 

identical). 

It is also true that the symmetry should be cylindrical 

about each atom. This is seen to be approximately true for 

the results obtained here by examining Figures III. 3. It 

might be noted that the net difference between this approach 

and the hybridization viewpoint is that here we are lacking 

some of the 2s electrons. This would lead to larger than 

expected values for the occupancies of the p^ and py (types 1 
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and 2) orbitals. 

The electron density difference maps have a ratio of 

deformation density peak height to bond peak height of about 

0.1. This would make a high quality quantitative analysis 

difficult. Since the total electron density is ca. 200 times 

the chemical deformation density, the data need to be very 

accurate indeed in order to obtain good results. This is 

especially true for strong reflections where a relatively 

small percentage error will produce a very large error 

relative to the deformation density. 

This also brings up the practice of discarding 

reflections which have a low signal-to-noise ratio. If the 

discarded reflections are not randomly distributed throughout 

space then a systematic effect will be seen in the 

deformation density. 

For a molecule such as 1,2,3-triazine the reflections are 

strongest perpendicular to the molecular plane and thus it is 

most likely that these will be observed in the high sin(0)/X 

region where the reflections are generally weaker, with the 

reflections lying in the molecular plane discarded more 

often. 

Regardless of whether one refines on P(k) or I(k), the 

electron density function is derived from F(k). However the 

phases are unattainable directly from the observed data. The 

standard procedure is to transfer the phases from the model 

to the observed data which may then be transformed back to 
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real space. 

In general the phases range from 0 to 2n. This adds an 

element of uncertainty since each has its own standard 

deviation. In the specific case of light-atom, 

centrosymmetric structures the phases may be either 0 or n, 

eliminating much of the uncertainty associated with the 

phases. It is for this reason alone that the majority of the 

high-accuracy studies are performed on structures which 

crystallize in one of the 92 centrosymmetric space groups 

(out of 230 possible space groups). 

Since the promolecule does not accurately account for the 

entire molecular electron density, the phases calculated 

cannot be perfectly accurate. A check of the differences in 

phases between Trials 5 and 3 reveal that 0.4% of the 

reflections change phase. These reflections are generally 

among the weaker reflections and are dispersed evenly 

throughout the entire sin(0)/X range. 

One may predict that a similar finding would come from a 

comparison of the phases determined from Trial 5 and the true 

phases since the total deformation density and the chemical 

deformation density differ by a factor of 2. 

As a test of how the phases affect the electron density 

maps, a difference map was calculated by transferring the 

phases from the promolecule without the p-orbitals to the 

observed data. 1.3% of the phases changed w.r.t. the phases 

determined by Trial 5. The resultant map (Figure III.7), 
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Figure III.7. Difference density map for Trial 5. Observed 
data with incorrect phases minus promolecule's 
carbon and nitrogen Is and 2s electrons. 
CI-0.1e-/A3 
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which can be compared to the correct map in Figure 111.5b, 

shows differences in the peaks heights and peak shapes. 

Despite the many failings of the dataset, a successful 

determination of the orbital orientations and their 

occupancies has been carried out. Figures III.4 graphically 

illustrates the three types of p-orbitals. The first type 

all have similar occupancy, approximately model the C2 

chemical symmetry, and are tangential to the ring. The 

second type have two distinct occupancies corresponding to 

the two atom types, again model the C2 symmetry, and are 

radially oriented w.r.t. the ring. The third type are also 

split into two occupancy groups, model the C2 symmetry, and 

lie perpendicular to the ring. 

The three types of orbital directions model the ring 

Sigma bonds, the lone pair and hydrogen bonds, and the p-n 

orbitals in a manner which follows closely our chemical 

intuition. The sum total of these three types of orbitals is 

a very good representation of the non-valence difference 

electron density shown in Figure III.5b which is unbiased by 

any valence orbital description. 

That the orbitals do not follow exactly the C2 chemical 

symmetry is probably a reflection of the limited resolution 

available in this experiment. 
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Conclusion 

The results obtained from the study of 1,2,3-triazine are 

both internally consistent and consistent with our chemical 

intuition. The promolecule's parameters and the electron 

density functions yield, potentially, good qualitative 

information which will provide useful insights into the 

chemistry of molecules. 

A  procedure by which the oriented atom promolecule is 

obtained from an experimentally determined dataset has been 

shown to be one in which four basic steps.are carried out. 

Obtaining the standard crystallographic promolecule model is 

the first step. One then determines the high-order data 

limit by plotting the bond (or lone pair) electron density 

peak heights against a sin(e)/X maximum and determining where 

the curve plateaus. Next high-accuracy parameters are 

determined by refining the X-type parameters against the 

high-order data only. As a final step the Y-type parameters 

are refined against the entire dataset while keeping the X-

type parameters fixed. 

Use of high-accuracy data in obtaining high quality 

results is of primary importance. For a quantitative 

analysis it has been seen that any deviation from ideality 

has ramifications on the electron density. Thus if low 

accuracy X-type parameters are used to obtain orbital 

information, the results may not be meaningful. The dataset 
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used in this study is only of moderate quality and thus the 

results were not deemed to be worthy of anything more than a 

qualitative analysis. 
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CHAPTER IV. 9-TERT-BUTYLANTHRACENE 

Introduction 

A study of 9-tert-butylanthracene is described in this 

chapter. In Chapter III good quality and high resolution 

were determined to be two important features of the data used 

for a study of the orbital features of atoms. The data for 

9-tert-butylanthracene are better in both respects than the 

data for 1,2,3-triazine. 

9-tert-butylanthracene does not lend itself to a large 

number of studies due to its complex nature. The results 

presented here were obtained by following the procedure 

developed for the study of 1,2,3-triazine. Four trial 

structures are described in this chapter. The Trial 1 

structure resulted from a standard crystallographic analysis. 

The Trial 2 structure resulted from a high-order refinement 

of the X-type parameters, and all data were used for the 

refinement of the Y-type parameters (which again include the 

hydrogen parameters). The high-order data cutoff was 

determined from the graph shown in Figure III.2. The 

structures in Trials 3 and 4 resulted from different 

electronic constraints (electron transfer and ionization, 

respectively) applied to the valence parameters of the carbon 

atoms. The X-type parameters were fixed at the values 

obtained from Trial 2. 

The electron density functions are shown in two-
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dimensional contour maps and in ORTEP-type drawings. The 

features of the illustrations and the refinement procedure 

are described in Appendix E. 

Preliminary Discussion 

During initial refinement the data were found to be of a 

higher quality than that of 1,2,3-triazine. A related 

compound (9-tert-butyl[DewarJanthracene) was obtained from 

the same source^^'^B as these two compounds but was not 

studied due to its poor quality. 

From Figure III.2 it is readily seen that the data have 

the resolution needed for a study of the orbitale. The curve 

plateaus well below the limit of data collection, leaving 

approximately 2000 pieces of high-order data for the 

refinement of the 163 X-type parameters. 

The molecular structure is more complicated than that of 

1,2,3-triazine but it presented no new difficulties during 

analysis. There are several different bonding situations 

which are, in most cases, redundant and a comparison between 

different bonding situations permits a check on the internal 

consistency of the results to be made. 

A summary of the pertinent data and crystal parameters is 

given in Table IV.1. SCF scattering factors were used for 

the carbon atoms and modified HF scattering factors were used 

for the hydrogen atoms. 
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Table IV.1. Summary of the data and crystal parameters for 
9-tert-butylanthracene 

Chemical formula 
Crystal system 
Space group symbol 
Lattice parameters 

Temperature of data collection 

Total number of reflections 
Number after averaging 
Number observed 
Internal agreement® 
Radiation 
Sin(0)/X (min/max, A"^) 

SiSoMinic 
P2i/c 
a-I1.137(l)A  
b-6.8927(8)Â 0-107.680(5)» 
C-17.792(1)A 
lOOK 

42375 
6805 
4587 (I>0) 
0.049 
Mo k„ (X=«0.71A) 
0.047/0.855 

^Defined as Rint(<!>)-(I<l>-111)/(Ek l<I>|). 

Table IV.2. Summary® of refinement conditions for the trial 
structures 

Refinement Electronic 
Trial parameters constrains 

1 X 
2 X,Y Std 
3 Y Tot 
4 Y Ion 

®See Table III.2 for explanation of terms used. 
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Table IV.3a. Atom coordinates (fractional, 10~^) and 
isotropic thermal parameters (A, 10-3) for 
9-tert-butylanthracene, Trial 1 

X y z Ua 

CI 7600.9(4) 1612.6(7) 8121.8(3) 17 
C2 8276.3(5) 764.5(8) 8821.8(3) 19 
C3 9336.0(5) -437.6(7) 8863.5(3) 17 
C4 9631.9(4) -840.1(6) 8186.7(3) 14 
C5 8526.7(5) -889.4(7) 5311.7(3) 19 
C6 7661.7(6) -576.9(9) 4589.7(3) 21 
C7 6572.6(5) 560.7(8) 4543.5(3) 18 
C8 6427.5(4) 1460.7(7) 5197.8(3) 15 
C9 7231.1(4) 2177.1(6) 6662.5(2) 12 
CIO 9169.7(4) -621.3(6) 6752.9(2) 14 
Cll 8906.2(4) -57.0(6) 7440.1(2) 13 
C12 7899.7(4) 1300.5(6) 7398.2(2) 12 
CIS 8358.9(4) -84.6(6) 6016.1(2) 14 
C14 7334.8(4) 1245.4(6) 5966.1(2) 13 
CIS 6505.3(4) 4134.6(6) 6605.7(3) 15 
C16 7047.1(7) 5440.4(8) 7339.6(4) 25 
C17 5088.0(5) 3827(1) 6480.4(5) 26 
C18 6690.8(6) 5399.7(8) 5924.8(3) 20 
HI 6867(34) 2369(59) 8116(21) 28(6) 
H2 7988(26) 954(44) 9303(16) 18(4) 
H 3 9867(27) -1067(47) 9398(17) 19 ( 5) 
H4 10311(21) -1658(37) 8172(13) 12(3) 
H5 9267(34) -1705(61) 5368(22) 30(7) 
H6 7727(29) -1182(50) 4084(18) 21(5) 
H7 5886(28) 745(49) 4006(18) 21(5) 
H8 5674(19) 2097(33) 5135(12) 8(3) 
HIO 9856(28) -1488(49) 6790(18) 21(5) 
H61 6739(28) 6805(48) 7198(18) 20(5) 
H62 7878(33) 5401(57) 7570(21) 27(6) 
H63 6676(46) 5037(82) 7805(29) 42(10) 
H71 4673(27) 3174(46) 6003(17) 20(5) 
H72 4985(43) 3126(75) 6943(27) 39(9) 
H73 4643(31) 5133(54) 6403(19) 25(6) 
H81 6328(22) 6716(38) 5953(14) 13(4) 
H82 7574(34) 5596(60) 6000(22) 29(7) 
H83 6303(29) 4872(50) 5385(18) 22(5) 

*U-(l/6n2)Trace(P G*}, where the form of the temperature 
factor is exp[-(k fi k^)/(4n2)] for atoms with anisotropic 
thermal parameters. U for atoms with isotropic thermal 
parameters is (l/8n^)0 where the form of the temperature 
factor is exp[-0/4 (2sin(e)/X)2]. 
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Table IV.3b. Atom coordinates (fractional, 10"^) and 
isotropic thermal parameters for atoms 
in 9-tert-butylanthracene, Trial 2 

X y z Ua 

CI 7600.8(7) 1614(1) 8122.0(4) 17 
C2 8276.6(8) 764(1) 8821.7(4) 20 
C3 9336.0(7) -437(1) 8863.5(4) 17 
C4 9631.6(6) -840.1(9) 8186.7(4) 15 
C5 8526.5(8) -889(1) 5311.8(4) 19 
C6 7661.6(9) -577(1) 4589.9(4) 22 
C7 6572.9(8) 561(1) 4543.8(4) 19 
C8 6427.6(6) 1461(1) 5197.8(4) 16 
C9 7231.1(6) 2177.6(9) 6662.5(4) 13 
CIO 9169.4(6) -621.6(9) 6753.0(4) 15 
Cll 8906.3(6) -56.5(9) 7440.0(4) 13 
C12 7900.1(6) 1300.1(9) 7397.9(4) 13 
CIS 8359.2(6) -84.8(9) 6016.0(4) 14 
C14 7334.7(6) 1246.0(9) 5966.0(4) 13 
CIS 6505.4(6) 4134.7(9) 6605.9(4) 16 
C16 7046(1) 5440(1) 7339.2(6) 26 
C17 5087.7(8) 3828(2) 6479.0(7) 26 
C18 6692.0(9) 5400(1) 5925.1(5) 21 
Hi 6830(33) 2389(54) 8119(20) 27(6) 
H2 7984(25) 950(41) 9305(16) 18(4) 
H3 9875(27) -1036(44)r 9394(17) 20(5) 
H4 10331(23) -1661(38) 8173(15) 15(4) 
H5 9310(34) -1695(57) 5364(22) 29(6) 
H6 7730(29) -1158(48) 4086(19) 23(5) 
H7 5879(27) 764(45) 3997(17) 20(4) 
H8 5668(19) 2112(31) 5132(12) 9(3) 
HIO 9885(29) -1503(49) 6794(19) 23(5) 
H61 6745(31) 6823(51) 7191(20) 25(5) 
H62 7875(33) 5398(54) 7555(20) 27(6) 
H63 6675(44) 5012(75) 7795(28) 41(9) 
H71 4652(28) 3140(46) 5993(18) 23(5) 
H72 4989(41) 3114(68) 6950(26) 39(9) 
H73 4674(33) 5006(57) 6434(21) 28(6) 
H81 6319(24) 6679(39) 5949(15) 15(4) 
H82 7587(35) 5632(58) 6012(22) 30(6) 
H83 6331(30) 4880(50) 5402(19) 24(5) 

®U=»{ 1/6ii2)TraceO G*), where the form of the temperature 
factor is expi-(k g k^)/(4n^)] for atoms with anisotropic 
thermal parameters. U for atoms with isotropic thermal 
parameters is where the form of the temperature 
factor is exp[-A/4 (2sin(e)/X)2]. 
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Table IV.3c. Anisotropic thermal parameters® ( A ,  1 0 " ^ )  for 
atoms in 9-tert-butylanthracene, Trial 1 

Uii U22 U33 "12 "13 "23 

CI 15 .9(1) 17. 7(1) 14 .9(1) 2 .8(0) 1 .5(2) 3 .7(2) 
C2 21 .0(1) 20. 3(2) 14 .0(1) 3 .0(0) 2 .7(2) 3 .3(2) 
C3 19 .6(1) 16. 4(1) 13 .1(1) 1 .5(0) 3 .4(2) 2 .4(2) 
C4 15 .8(1) 12. 6(1) 13 .3(1) 1 .0(0) 2 .0(2) 3 .3(2) 
C5 21 .5(1) 16. 0(1) 13 .9(1) 2 .6(0) -0 .9(2) 4 .9(2) 
C6 26 .0(2) 19. 8(2) 12 .8(1) 2 .4(0) -1 .3(2) 3 .2(2) 
C7 20 .5(1) 18. 2(1) 12 .5(1) 1 .1(0) 0 .0(2) -1 .5(2) 
C8 14 .5(1) 15. 1(1) 13 .2(1) 0 .7(0) 0 .5(2) -1 .6(2) 
C9 10 .9(1) 10. 4(1) 13 .3(1) 1 .3(0) -0 .2(1) 0 .3(1) 
CIO 14 .4(1) 11. 1(1) 13 .2(1) 1 .6(0) -0 .4(1) 3 .0(2) 
Cll 12 .7(1) 10. 0(1) 12 .5(1) 1 .3(0) 0 .3(1) 0 .9(2) 
C12 11 .6(1) 11. 4(1) 12 .4(1) 1 .4(0) 0 .7(1) 0 .1(1) 
C13 14 .6(1) 10. 9(1) 12 .3(1) 1 .6(0) -0 .6(1) 0 .3(2) 
C14 12 .3(1) 10. 3(1) 12 .5(1) 1 .1(0) 0 .2(1) -0 .4(1) 
CIS 12 .7(1) 11. 5(1) 17 .3(1) 1 .2(0) -0 .6(2) 2 .5(2) 
C16 32 .8(2) 14. 5(1) 20 .2(2) 0 .8(1) -4 .7(2) 4 .6(2) 
C17 13 .8(1) 22. 4(2) 36 .0(2) 3 .4(1) -1 .5(3) 3 .2(2) 
C18 25 .8(2) 13. 5(1) 21 .0(1) 2 .2(1) 6 .0(2) 3 .8(2) 

®U»(l/2n2)|5 G*, where the temperature factor is of the 
form exp[-(k g k'^)/4ii^]. 

There are four trials (labeled 1 through 4) described in 

the remaining sections. A summary of the trial structures' 

refinement conditions is given in Table IV.2. 

Initial Structure Refinement 

The initial atomic coordinates and the data for Trial 1 

were obtained from a previous study^®. All parameters were 

adjusted for an optimal fit of the calculated structure 

factors to the experimental structure factors by means of a 
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Table IV.3d. Anisotropic thermal parameters^ (A, 10~^) for 
atoms in 9-tert-butylanthracene, Trial 2 

Un U22 U33 "12 "13 "23 

CI 16 .1(2) 19 .5(3) 14 .9(2) 2.8(1) 1 .9(3) 4. 6(3) 
C2 21 .7(3) 21 .9(3) 13 .8(2) 3.1(1) 2 .7(3) 3. 9(3) 
C3 19 .9(3) 17 .5(2) 13 .5(2) 1.5(1) 3 .7(2) 3. 1(3) 
C4 16 .3(2) 13 .8(2) 13.1(2) 1.0(1) 2 .0(2) 4. 3(2) 
C5 21 .8(3) 17 .1(2) 14 .1(2) 2.4(1) -0 .7(2) 5. 6(3) 
C6 26 .6(3) 21 .0(3) 12 .9(2) 2.4(1) -1 .4(3) 3. 9(4) 
Ù7 20 .8(3) 19 .5(3) 12 .6(2) 1.1(1) 0 .0(3) -0. 8(3) 
C8 14 .6(2) 16 .5(2) 13 .6(2) 0.7(1) 0 .0(2) -1. 4(3) 
C9 11 .3(2) 11 .5(2) 13 .8(2) 1.4(1) -0 .5(2) 0. 7(2) 
CIO 14 .9(2) 12 .1(2) 13 .3(2) 1.5(1) -0 .4(2) 3. 5(2) 
Cll 12 .9(2) 11 .3(2) 12 .9(2) 1.3(1) 0 .2(2) 1. 4(2) 
C12 11 .9(2) 12 .9(2) 12 .3(2) 1.4(1) 1 .0(2) 0. 7(2) 
C13 15 .1(2) 12 .0(2) 12 .5(2) 1.5(1) -0 .7(2) 0. 3(2) 
C14 12 .6(2) 11 .7(2) 12 .6(2) 1.1(1) 0 .0(2) 0. 1(2) 
CIS 13.0(2) 12.5(2) 17 .7(2) 1.2(1) -0 .3(2) 2. 8(2) 
C16 33 .1(4) 15 .7(3) 20 .6(3) 0.8(1) -4 .4(3) 4. 7(4) 
C17 14 .0(3) 23 .9(3) 35 .5(4) 3.3(1) -1 .5(4) 2. 7(3) 
C18 25 .6(3) 14 .6(2) 21 .6(3) 2.2(1) 6 .5(3) 3. 9(3) 

®U- (1/2I I2)P G*, where the temperature factor is of the 
form exp[-(k g k'^)/4n^]. 

least squares routine using SCF scattering factors. The 

atomic parameters are listed in Tables IV.3. The calculated 

bond angles and interatomic distances are given in Tables 

IV.5. Tables IV.6 list the relevant quantities from the 

statistical analysis of the calculated structure factors' fit 

to the observed data. 
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Table IV.3e. RMS amplitudes of vibration® (A) for atoms in 
9-tert-butylanthracene, Trials 1 and 2 

Trial 1 Trial 2 Trial 1 Trial 2 

CI 0.13 0.13 Hi 0.17 0.16 
C2 0.14 0.14 H2 0.13 0.13 
C3 0.13 0.13 H3 0.14 0.14 
C4 0.12 0.12 H4 0.11 0.12 
C5 0.14 0.14 H5 0.17 0.17 
C6 0.15 0.15 H6 0.15 0.15 
C7 0.13 0.14 H7 0.14 0.14 
C8 0.12 0.13 H8 0.09 0.09 
C9 0.11 0.11 HIO 0.14 0.15 
CIO 0.12 0.12 H61 0.14 0.16 
Cll 0.11 0.11 H62 0.16 0.16 
C12 0.11 0.11 H63 0.21 0.20 
C13 0.12 0.12 H71 0.14 0.15 
C14 0.11 0.11 H72 0.20 0.20 
CIS 0.12 0.12 H73 0.16 0.17 
C16 0.16 0.16 HBl 0.11 0.12 
C17 0.16 0.16 H82 0.17 0.17 
C18 0.14 0.14 H83 0.15 0.15 

^standard deviations for the hydrogens are ca. 7*10~2. 

High-Order Refinement 

The high-order cutoff was obtained by plotting the 

maximum electron density peak height, which appeared on a 

difference electron density map, versus the sin(0)/X cutoff 

used. A plot (see Figure III.2) reveals that the non-atomic 

electron density contributes very little to the x-ray data 

beyond 0.7Â"^. As there were sufficient data beyond 0.7Â~^ 

to obtain meaningful results from a least squares refinement, 

this was chosen as the high-order cutoff. 
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Table IV.4a. Trial 2 orbital parameters for 9-tert-
butylanthracene 

i H ai* bi Ci ûeï 

Cl 1 0.963 0.146 -0.162 0.976 0.296 
Cl 2 1.037 -0.204 0.960 0.190 0.371 
Cl 3 0.000 0.968 0.227 -0.108 -0.667 

C2 1 0.836 0.178 -0.209 0.962 0.170 
C2 2 1.164 0.093 0.976 0.195 0.497 
C2 3 0.000 0.980 -0.055 -0.193 -0.667 

C3 1 1.120 0.062 0.483 0.873 0.454 
C3 2 0.808 0.035 0.874 -0.485 0.141 
C3 3 0.072 0.997 -0.061 -0.037 -0.595 

C4 1 0.983 -0.100 -0.741 0.664 0.317 
C4 2 1.017 -0.090 0.671 0.736 0.350 
C4 3 0.000 0.991 -0.013 0.134 -0.667 

C5 1 0.801 -0.024 0.454 0.891 0.134 
C5 2 1.132 -0.035 0.890 -0.455 0.466 
C5 3 0.067 0.999 0.042 0.006 -0.600 

C6 1 0.948 0.073 0.689 0.721 0.281 
06 2 1.011 0.058 0.719 -0.693 0.344 
C6 3 0.041 0.996 -0.093 -0.013 —0.626 

C7 1 1.022 -0.148 0.331 0.932 0.355 
C7 2 0.894 0.174 0.936 -0.305 0.228 
C7 3 0.084 0.974 -0.117 0.196 -0.583 

C8 1 0.855 0.166 -0.385 0.908 0.189 
C8 2 1.002 -0.325 0.848 0.419 0.335 
C8 3 0.143 0.931 0.365 -0.015 -0.524 

C9 1 0.741 0.262 -0.407 0.875 0.074 
C9 2 1.104 -0.356 0.802 0.480 0.437 
C9 3 0.156 0.897 0.437 -0.066 -0.511 

CIO 1 0.947 0.000 0.818 0.575 0.281 
CIO 2 0.937 0.046 0.574 -0.817 0.271 
CIO 3 0.115 0.999 —0.026 0.038 -0.551 

asee text for description of vector directions. 
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Table IV.4a. Continued 

i ki ai* bi Ci Aeï 

Cil 1 0.818 0.181 0.176 0.967 0.151 
cil 2 1.108 0.146 0.968 -0.204 0.441 
cil 3 0.075 0.973 -0.178 -0.150 -0.592 

C12 1 •1.070 -0.169 -0.234 0.957 0.403 
C12 2 0.930 0.257 0.927 0.272 0.264 
C12 3 0.000 0.952 -0.292 0.096 -0.667 

C13 1 0.961 0.104 -0.228 0.968 0.294 
C13 2 0.741 -0.349 0.903 0.250 0.074 
C13 3 0.298 0.931 0.364 -0.014 -0.368 

C14 1 0.947 0.022 0.213 0.977 0.280 
C14 2 1.033 -0.214 0.956 -0.203 0.366 
C14 3 0.020 0.977 0.204 -0.067 -0.647 

C15 1 0.368 -0.722 -0.679 0.130 -0.298 
C15 2 0.869 0.540 -0.671 -0.508 0.202 
C15 3 0.763 0.432 -0.296 0.852 0.096 

C16 1 0.857 0.185 0.513 -0.838 0.190 
C16 2 0.334 0.341 0.767 0.544 -0.333 
C16 3 0.809 -0.922 0.386 0.033 0.143 

C17 1 0.833 -0.456 —0.882 0.115 0.166 
Cl 7 2 0.998 0.889 -0.458 0.017 0.332 
C17 3 0.169 0.038 0.110 0.993 -0.498 

C18 1 1.026 —0.488 0.573 -0.659 0.360 
CIS 2 0.682 0.638 0.749 0.179 0.015 
C18 3 0.291 0.596 -0.332 -0.731 -0.375 
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Table IV.4b. Trial 3 orbital parameters for 9-tert-
butylanthracene 

i Xi ai® bi Ci Netb Aeï 

CI 1 1.030 0.133 -0.092 0.987 0.150 0.363 
CI 2 1.121 -0.197 0.973 0.117 0.454 
CI 3 0.000 0.971 0.210 -0.111 -0.667 

C2 1 0.844 0.183 -0.193 0.964 0.030 0.178 
C2 2 1.176 0.091 0.980 0.179 0.509 
C2 3 0.010 0.979 -0.055 -0.197 -0.657 

C3 1 1.133 0.067 0.497 0.865 0.066 0.466 
C3 2 0.826 0.034 0.865 -0.500 0.160 
C3 3 0.107 0.997 -0.063 -0.041 -0.560 

C4 1 1.040 -0.122 -0.493 0.861 0.127 0.374 
C4 2 1.087 —0.062 0.870 0.489 0.420 
C4 3 0.000 0.991 -0.006 0.137 -0.667 

C5 1 0.797 —0.022 0.449 0.893 0.003 0.130 
C5 2 1.138 -0.035 0.892 -0.450 0.472 
C5 3 0.068 0.999 0.041 0.004 -0.599 

C6 1 0.949 0.067 0.626 0.777 0.006 0.283 
C6 2 1.005 0.066 0.774 -0.630 0.338 
C6 3 0.052 0.996 -0.093 -0.010 -0.615 

C7 1 1.047 -0.153 0.313 0.938 0.072 0.381 
C7 2 0.919 0.170 0.943 -0.287 0.253 
C7 3 0.105 0.974 -0.116 0.197 -0.562 

C8 1 0.821 0.160 -0.364 0.918 -0.091 0.154 
C8 2 0.968 -0.333 0.855 0.397 0.302 
C8 3 0.120 0.929 0.369 -0.015 -0.547 

C9 1 0.736 0.259 -0.401 0.879 0.002 0.070 
C9 2 1.107 -0.357 0.805 0.473 0.440 
C9 3 0.158 0.897 0.436 -0.065 -0.508 

asee text for description of vector directions. 

^Net number of electrons gained from neutral atom's 
number of electrons. 



www.manaraa.com

115 

Table IV.4b. Continued 

i Xi Si* . bi Ci Net Aeî 

CIO 1 0.929 0.007 0.888 0.460 -0.034 0.263 
CIO 2 0.925 0.048 0.459 -0.887 0.258 
CIO 3 0.112 0.999 -0.029 0.039 -0.555 

Cll 1 0.870 0.182 0.184 0.966 0.160 0.204 
Cll 2 1.159 0.146 0.966 -0.212 0.492 
Cll 3 0.131 0.972 -0.180 -0.149 -0.536 

C12 1 1.099 -0.171 -0.240 0.956 0.094 0.432 
C12 2 0.955 0.261 0.924 0.279 0.288 
C12 3 0.040 0.950 -0.297 0.095 -0.626 

C13 1 0.980 -0.099 0.221 -0.970 0.056 0.313 
C13 2 0.759 -0.356 0.903 0.241 0.092 
C13 3 0.318 0.929 0.369 -0.011 -0.349 

C14 1 0.974 0.023 0.207 0.978 0.069 0.307 
C14 2 1.051 -0.214 0.957 -0.198 0.385 
C14 3 0.043 0.977 0.205 —0.067 -0.623 

C15 1 0.328 -0.721 -0.681 0.131 -0.126 -0.338 
C15 2 0.827 0.544 -0.673 -0.502 0.160 
C15 3 0.719 0.430 -0.290 0.855 0.052 

C16 1 0.821 0.173 0.522 -0.835 -0.096 0.154 
C16 2 0.303 0.331 0.768 0.549 -0.364 
C16 3 0.781 0.928 -0.371 -0.040 0.114 

C17 1 0.738 -0.473 -0.873 0.122 -0.292 0.071 
C17 2 0.897 0.880 -0.475 0.016 0.231 
C17 3 0.073 0.044 0.115 0.992 -0.594 

C18 1 0.955 —0.486 0.578 -0.656 -0.197 0.288 
CIS 2 0.619 0.641 0.745 0.183 -0.048 
CIS 3 0.230 0.594 -0.332 -0.733 -0.437 
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Table IV.4c. Trial 4 orbital parameters for 9-tert-
butylanthracene 

i H ai* bi Ci Netb ûej 

Cl 1 0.955 0.173 -0.279 0.944 -0.033 0.289 
CI 2 1.012 -0.193 0.931 0.311 0.345 
Cl 3 0.000 0.966 0.236 -0.107 -0.667 

C2 1 0.733 0.204 -0.235 0.950 -0.174 0.066 
C2 2 1.094 0.088 0.971 0.221 0.427 
C2 3 0.000 0.975 -0.039 -0.219 -0.667 

C3 1 1.057 0.063 0.492 0.868 -0.209 0.390 
C3 2 0.734 0.034 0.869 -0.494 0.068 
C3 3 0.000 0.997 -0.060 —0.038 —0.667 

C4 1 0.926 —0.065 -0.945 0.319 -0.102 0.259 
C4 2 0.973 -0.119 0.325 0.938 0.306 
C4 3 0.000 0.991 -0.023 0.133 -0.667 

C5 1 0.704 -0.020 0.474 0.880 -0.262 0.038 
C5 2 1.034 -0.029 0.880 -0.475 0.367 
C5 3 0.000 0.999 0.035 0.004 -0.667 

C6 1 0.855 0.048 0.452 0.891 -0.254 0.188 
C6 2 0.892 0.086 0.887 -0.454 0.225 
C6 3 0.000 0.995 -0.098 -0.004 -0.667 

C7 1 0.973 -0.142 0.323 0.936 -0.192 0.307 
C7 2 0.835 0.171 0.939 -0.298 0.168 
C7 3 0.000 0.975 -0.117 0.188 -0.667 

C8 1 0.743 0.160 -0.385 0.909 -0.339 0.076 
C8 2 0.887 -0.328 0.848 0.416 0.220 
C8 3 0.032 0.931 0.365 -0.009 -0.635 

C9 1 0.675 0.252 -0.397 0.882 -0.198 0.009. 
C9 2 1.047 -0.356 0.810 0.466 0.380 
C9 3 0.080 0.900 0.432 -0.063 -0.587 

BSee text for description of vector directions. 

bwet number of electrons gained from neutral atom's 
number of electrons. 
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Table IV.4c. Continued 

i ai bi Ci Net Aeî 

CIO 1 0.846 0.008 0.955 0.297 -0.316 0.180 
CIO 2 0.838 0.046 0.296 -0.954 0.171 
CIO S 0.000 0.999 -0.021 0.041 -0.667 

Cll 1 0.784 0.177 0.173 0.969 -0.105 0.118 
Cll 2 1.082 0.141 0.970 -0.199 0.415 
Cll S 0.028 0.974 -0.172 -0.148 —0 .638 

C12 1 1.024 -0.166 -0.225 0.960 -0.110 0.358 
C12 2 0.866 0.283 0.922 0.265 0.199 
C12 S 0.000 0.945 -0.315 0.090 -0.667 

C13 1 0.893 — 0 « 088 0.204 -0.975 -0.204 0.226 
CIS 2 0.680 -0.336 0.915 0.222 0.014 
CIS 3 0.223 0.938 0.347 -0.012 -0.444 

C14 1 0.899 0.023 0.191 0.981 -0.141 0.233 
C14 2 0.960 -0.226 0.957 -0.181 0.293 
CI 4 3 0.000 0.974 0.217 -0.065 -0.667 

CIS 1 0.249 -0.729 -0.672 0.128 -0.340 -0.418 
CIS 2 0.760 0.544 -0.683 —0.488 0.094 
CIS 3 0.640 0.416 -0.287 0.863 -0.026 

C16 1 0.724 0.117 0.536 -0.836 -0.392 0.057 
C16 2 0.215 0.341 0.769 0.541 -0.452 
C16 S 0.669 0.933 -0.348 -0.093 0.003 

C17 1 0.650 -0.489 -0.865 0.110 -0.554 -0.017 
C17 2 0.796 0.871 -0.490 0.014 0.130 
C17 3 0.000 0.042 0.102 0.994 -0.667 

C18 1 0.845 -0.486 0.580 -0.654 -0.511 0.179 
CIS 2 0.516 0.639 0.746 0.187 -0.151 
C18 3 0.128 0.597 -0.327 -0.733 -0.539 
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Table IV.5a. Bond angles (") for 9-tert-butylanthracene, 
Trials 1 and 2 

Trial 1 Trial 2 

C2 Cl C12 122.34(4) 122.26(7) 
C2 Cl Hl 118(2) 117(2) 
C12 Cl Hl 120(2) 120(2) 
Cl C2 C3 120.73(4) 120.77(7) 
Cl C2 H2 119(2) 119(2) 
Cl C2 H2 119(2) 119(2) 
C3 C2 H2 120(2) 120(2) 
C2 C3 C4 119.24(4) 119.22(7) 
C2 C3 H3 121(2) 121(2) 
C4 C3 H3 120(2) 119(2) 
C3 C4 Cil 121.30(4) 121.32(6) 
C3 C4 H4 123(1) 123(1) 
Cil C4 H4 115(1) 115(1) 
C6 C5 C13 121.20(5) 121.23(7) 
C6 C5 H5 121(2) 121(2) 
C13 C5 H5 118(2) 118(2) 
C5 C6 Cl 119.00(4) 118.98(7) 
C5 C6 H6 123(2) 124(2) 
C7 C6 H6 118(2) 117(2) 
C6 C7 ce 121.17(4) 121.19(7) 
C6 Cl H7 120(2) 120(2) 
C8 Cl H7 119(2) 119(2) 
C7 ce C14 121.99(4) 121.99(6) 
Cl ce HB 117(1) 117(1) 
C14 C8 H8 121(1) 121(1) 
C14 ce H8 121(1) 121(1) 
C12 C9 C14 116.54(4) 116.51(5) 
C12 C9 C15 122.73(4) 122.77(6) 
C14 C9 C15 120.56(4) 120.56(5) 
Cil CIO C13 120.00(4) 120.02(6) 
Cil ClO HlO 119(2) 119(2) 
C13 CIO HlO 120(2) 121(2) 
C4 cil ClO 119.80(4) 119.80(6) 
C4 cil C12 120.11(4) 120.12(6) 
CIO cil C12 120.09(4) 120.09(6) 
CIO cil C12 120.09(4) 120.09(6) 
Cl C12 C9 123.93(4) 123.86(6) 
Cl C12 Cil 115.91(4) 115.93(6) 
Cl C12 Cil 115.91(4) 115.93(6) 
C9 C12 Cil 120.10(3) 120.16(5) 
C5 C13 ClO 119.94(4) 119.98(6) 
C5 C13 C14 120.11(4) 120.10(6) 
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Table IV.5a. Continued 

Trial 1 Trial 2 

C8 C14 C9 123.91(4) 123.93(6) 
ce Cl 4 C13 115.92(4) 115.90(6) 
C9 C14 C13 120.08(3) 120.08(5) 
C9 Cl 5 C16 112.72(4) 112.76(6) 
C9 C15 C17 112.24(4) 112.26(6) 
C9 C15 C18 110.26(4) 110.23(6) 
C16 C15 C17 108.76(5) 108.79(8) 
C16 C15 C18 102.75(4) 102.73(6) 
C17 C15 C18 109.68(4) 109.63(7) 
C15 C16 H61 108(2) 108(2) 
C15 C16 H62 117(2) 116(2) 
C15 C16 H63 111(3) 110(3) 
H61 C16 H62 112(3) 111(3) 
H61 C16 H63 105(3) 107(3) 
H62 C16 H63 103(3) 105(3) 
Cl 5 Cl 7 H71 113(2) 114(2) 
C15 C17 H72 109(3) 108(2) 
C15 C17 H72 109(3) 108(2) 
C15 C17 H73 110(2) 111(2) 
H71 C17 H72 111(3) 110(3) 
H71 C17 H73 102(3) 104(3) 
H72 C17 H73 112(3) 109(3) 
C15 C18 H81 109(1) 108(1) 
C15 C18 H82 110(2) 110(2) 
C15 C18 H83 115(2) 115(2) 
H81 C18 H82 106(3) 106(3) 
H81 C18 H83 108(2) 109(2) 
H82 C18 H83 108(3) 109(3) 
H82 C18 H83 108(3) 109(3) 



www.manaraa.com

120 

Table IV.5b. Interatomic distances ( A )  for 9-tert-
butylanthracene, Trials 1 and 2 

Trial 1 Trial 2 Trial 1 Trial 2 

CI HI 0. 97(4) 1.01(4) Cl C12 1.440(1) 1 .442(1) 
C3 H3 1. 05(3) 1.04(3) CS H5 0.98(4) 1 .01(4) 
C5 C13 1. 434(1) 1.433(1) C7 H7 1.03(3) 1 .05(3) 
C9 C12 1. 429(1) 1.429(1) C9 CIS 1.560(1) 1 .560(1) 
CIO Cll 1. 397(1) 1.396(1) Cll C12 1.445(1) 1 .444(1) 
C13 C14 1. 445(1) 1.446(1) CIS C17 1.540(1) 1 .540(1) 
CIS C18 1. 557(1) 1.557(1) C16 H62 0.89(4) 0 .89(4) 
C16 H63 1. 07(5) 1.06(5) C17 H73 0.95(3) 0 .93(4) 
C17 H72 1. 02(4) 1.01(5) C18 H83 0.96(4) 0 .96(3) 
C18 H81 1. 00(3) 0.98(3) C7 C8 1.371(1) 1 .371(1) 
C7 C6 1. 426(1) 1.425(1) C8 H8 0.92(2) 0 .93(2) 
C8 C7 1. 371(1) 1.371(1) C8 C14 1.440(1) 1 .439(1) 
C9 C12 1. 429(1) 1.429(1) C9 C14 1.431(1) 1 .431(1) 
C9 CIS 1. 560(1) 1.560(1) CIO HlO 0.96(3) 0 .99(3) 
CIO Cll 1. 397(1) 1.396(1) CIO C13 1.397(1) 1 .397(1) 
Cll CIO 1. 397(1) 1.396(1) Cll C4 1.434(1) 1 .434(1) 
Cll C12 1. 445(1) 1.444(1) C12 C9 1.429(1) 1 .429(1) 
C12 Cl 1. 440(1) 1.442(1) C12 Cll 1.445(1) 1 .444(1) 
C13 CIO 1. 397(1) 1.397(1) C13 CS 1.434(1) 1 .433(1) 

Table IV.6a. Rw (10 ~3) in reciprocal space zones 

ALL® hOO OkO 001 Okl hOl hkO 

#lb 4587 17 5 11 177 302 113 
#2 1713 3 1 0 49 84 32 

1 #1 28 23 53 71 29 28 37 
2 #1 27 20 89 54 29 26 32 
2 #2 24 15 24 — — 24 19 31 
3 #1 27 20 87 54 29 26 32 
4 #1 27 21 85 45 28 26 32 

®ALL implies that the entire dataset was used. 

^Number of reflections in each zone. They are dependent 
on sin(0)/X and correspond to total, high-order, and low-
order data respectively. 



www.manaraa.com

121 

Table IV.6b. (10-3) in sin(0)^X ranges 

12 74 198 348 543 746 953 1062 651 
n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 91 81 86 87 78 45 24 22 27 
2 65 61 76 72 74 43 24 22 25 
3 70 66 71 71 74 43 24 22 25 
4 98 85 77 67 70 43 24 22 25 

is calculated for the range [n-0.1, n) where 
n«sin(0)/X. 

^Number of reflections in the range [n-0.1, n). 

Table IV.6c. Number of reflections with (|E|-|F|) in the 
the range ((n-l)a(E), ne(E)j 

n »  1 2 3 4 5 6 7 8 9  > « 1 0  

1 412 411 369 353 345 323 293 271 240 1570 
2 421 429 434 376 350 328 296 271 230 1452 
23 106 107 117 119 91 95 116 96 88 778 
3 427 421 421 400 339 316 322 266 236 1439 
4 428 437 420 379 368 308 299 289 213 1446 

^High-order data only. 
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Table IV.6d. Refinement results for 9-tert-butylanthracene 

Trial LSE ERpa e(p) Scale 

1^ 621202 11.95 0.052 0.9786(4) 
2° 357913 15.20 0.007 1.004(6) 
2 563959 11.15 0.041 
3 561864 11.13 0.041 
4 558063 11.08 0.049 

^Values of ERF not normalized. See text for discussion. 

^High-order data only. 

Using the Trial 1 atomic parameters as initial values, 

the X-type parameters for Trial 2 were obtained using only 

the high-order data. The hydrogen atoms' parameters were 

refined against all the data. 

Comparisons of the results for Trials 1 and 2 in Tables 

IV.3 show that the estimated standard deviations (esd's) are 

larger for the latter and that the average thermal 

vibrational parameters are also larger. Because this was 
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seen in the results for 1,2,3-triazine, we may conclude here 

that the spherical-atom promolecule's atoms are too large and 

diffuse in the valence region which, when using all the data, 

reduces the calculated thermal parameters. This is supported 

by the knowledge that some electron density has been removed 

from the atoms for bonding and that the electron density is 

generally more localized in molecules. This supports another 

study45 which used a function to weight the high-order data 

more, thus producing results which were intermediate between 

a standard refinement and a high-order refinement. 

The statistical information given in Tables IV.6 show 

that the data does not have the severe error which was 

encountered in the case of 1,2,3-triazine. In fact the 

residuals are approximately half of those obtained in Chapter 

III, Tables III.7. Table IV.6a does have an anomaly in the 

OkO zone reflections, but this is not in the high-order 

region as seen in 1,2,3-triazine. The OkO direction will 

need to be examined more closely when considering the valence 

orbitals since this is where the major effect will occur. We 

see in Table IV.6b that the error steadily decreases as we 

approach the high-order region which is expected since we can 

not hope to fit the low-order data well but insist on 

accurately fitting the high-order data. 

There is an indication of a problem which shows up in 

Table IV.6c where the difference distribution (|E|-|F| versus 

(j(E)) does not drop off in the expected fashion (as seen in 
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Table III.7c). It might be argued that this is due to the 

inability to fit the valence electron redistribution. This 

is ruled out however by noting that a similar distribution is 

seen for the high-order-only results for Trial 2. 

The values of ERF and e(p) in Table IV.6d are high and 

low respectively. Equation (11.45) shows that o(p) is a 

simple function of |E|-|F| and its low value agrees with the 

previous statistical results. The value of ERF^®, given in 

Equation (11.40), is a function of w*(|E|-|F|)2 and its high 

value can only be attributed to the weights being too large. 

In the future it would be wise to normalize the weights in 

Equation (II.40) (note that this is the only statistical 

analysis equation that uses weights and does not normalize 

their values). Using this modified ERF function, the 

calculated value of ERF for Trial 5 of 1,2,3-triazine becomes 

1.013 and the value for Trial 2 of 9-tert-butylanthracene 

becomes 0.223 (the average weights are 1.788 and 2503.9, 

respectively). This then clears up the fault with the 

standard definition of the ERF and shows that the ERF is 

indeed lower as expected and removes the scalar dependence of 

the weights. 

Three views of the promolecule for Trial 2 with 

vibrational ellipsoids are shown in Figures IV.1. The 

thermal ellipsoids are all close to isotropic which is an 
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indication of a good dataset. A close examination of the 

terminal methyl carbon atoms in Figure IV.lb reveals that a 

slight rotational disorder may be present in the tertiary-

butyl group. This disorder can effect the orbital parameter 

determination in an adverse manner since the electron density 

is effectively smeared in the direction of the rotation, 

thereby modifying the regions of high and low slope in the 

density. It is these regions which were seen to be well 

modeled by the oriented valence shell determination in 1,2,3-

triazine. 

The contour maps of the observed electron density are 

shown in Figures IV.2. Due to the non-planarity of the 

molecule it was divided into sections and contoured. Note 

that some of the atoms lie out of the plane and will appear 

to have lower electron density compared to similar atoms. 

It is interesting that some electron density is evident 

between atoms in Figures IV.2 even at this level of 

contouring (note that, for contrast effect, Figures IV.2b and 

2e include the small additive constant from F(0,0,0) and are 

thus everywhere positive). No such effect was seen for 

1,2,3-triazine. We also see the regions of low and high 

slopes in the electron density functions surrounding the 

atoms and may predict at this time that these will be matched 

by the calculated valence orbitals. 
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Figure IV.la. Top view of the 9-tert-butylanthracene 
promolecule showing atom identifiers. 
Hydrogen atoms not shown for clarity 
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Figure IV.lb. Side (left) and front (right) views of Figu 
IV.la 
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Figure IV.2a. Contour map of observed electron density for 
9-tert-butylanthracene, ring containing CI 
(middle left). CI-l.OevA^. Small additive 
constant (F(0,0,0)) added for contrast to this 
figure and to Figure IV.2e only. See Appendix 
E for explanation of map features for this and 
all other contour maps 
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Figure IV.2b. Contour map similar to Figure IV.2a, ri 
containing C8 (middle left) 
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Figure IV.2c. Contour map similar to Figure IV.2a, atoms 
(left), CIS, and C16 
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Figure IV.2d. Contour map similar to Figure IV.2a, atoms 
(left), CIS, and C17 
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Figure IV.2e. Contour map similar to Figure IV.2a, atoms 
(left), CIS, and C18. Small constant valu 
due to F(0,0,0) included 
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Figure IV.3a. TDD map of Trial 2 (using spherical atoms), 
ring containing Cl (middle left). CI-O.le'/ÂJ 
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Figure IV.3b. TDD map similar to Figure IV.3a, ring 
containing C8 (middle left) 
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Figure IV.3c. TDD map similar to Figure IV.3a, atoms C9 
(left), CIS, and C16 
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Figure IV.3d. TDD map similar to Figure IV.3a, atoms C9 
(left), CIS, and C17 
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Figure IV.3e. TOD map similar to Figure IV.3a, atoms C9 
(left), CIS, and C18 
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The electron density regions around the hydrogen atom 

positions are seen to be relatively diffuse leading one to 

the conclusion that there is a large amount of freedom in the 

positions. The electron density in Figures IV.2d, 2e, and 2f 

also exhibit maxima near the bond center and depressions 

surrounding atoms C9 and CIS. This depression can only be 

interpreted as being due to the Fourier truncation effect and 

further interpretation of the detailed electronic structure 

must be done using the more appropriate difference maps. 

Figures IV.3 are electron density difference maps 

obtained by subtracting the spherical-atom promolecule from 

the observed electron density. These total deformation 

density (TDD) maps exhibit a peak height fluctuation similar 

to that seen in Figure 11.5c for 1,2,3-triazine. The peaks 

are nearer to the interatomic vectors in this case and are 

also continuous. The peaks are more square than expected. 

This is an artifact of subtracting spherical atoms. The 

hydrogens are again seen to be poorly accounted for by 

examining the residual electron density around the atomic 

positions. 

Examining Table IV.3b we see that atoms C16, C17, and C18 

have greater average thermal parameters. This coupled with 

the previous realization that the tertiary-butyl group may 

exhibit a rotational disorder prevents us from a detailed 

examination of this group. Note that the thermal parameters 

attempt to model the rotational disorder but are actually 



www.manaraa.com

139 

inadequate for the purpose. The rotational disorder has not 

been included in the promolecule. 

Valence Orbital Refinement 

Three sets of orbital parameters were obtained using the 

X-type parameters from Trial 2. Standard electronic 

constraints were used in obtaining the orbital parameters for 

Trial 2. The electrons were allowed to transfer between 

valence orbitals on the atoms (keeping the molecule neutral) 

in Trial 3. In Trial 4 the eigenvalues were constrained only 

to lie in the range [0,2]. 

Trial 4 is an attempt to obtain a better model since some 

of the electrons move into the bonding regions thus lowering 

the number of electrons on the atoms. Although the net 

number of electrons in Trial 3 is lower than that of the 

neutral molecule, it should not be construed that the real 

molecule has a net charge. 

The resultant orbital parameters for these three trials 

are listed in Tables IV.4. All of the eigenvalues in Trial 2 

remained in the range of [0,2] except for eigenvalue number 3 

on atoms CI, C2, C4, and C12 which tended toward negative 

numbers and thus were fixed at zero. 

The directions a, b, and c are perpendicular, radially 

outward, and tangential to the three atoms consisting of the 

parent atom and its two neighbors for atoms Cl through CIO. 
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The directions for atoms Cll through C14 are a) perpendicular 

to the parent atom and its neighbors (one of which must be C9 

or CIO), b) radial outward from the bond which is in common 

to the adjacent rings, and c) perpendicular to the 

aforementioned plane. For CIS b) is radially outward along 

the C9-C15 vector, a) is perpendicular to the plane 

containing C12, and c) is perpendicular to these two (in the 

C15-C9-C12 plane). For CIS through C18, b) is again radially 

outward along the interatomic vectors to CIS, a) is 

perpendicular to the plane containing Cxx-ClS-C9, and c) is 

perpendicular to a) and b) (in the plane). 

The low values for the orbitals perpendicular to the 

molecular plane are presumed to be due to the extra 2s 

electrons in this direction as was argued in Chapter III. It 

is possible however that the other two orbitals are 

withdrawing electrons (due to the electronic constraints 

keeping each atom neutral) from this orbital. This argument 

is disproved by Trial 4 (see Table IV.4c) where the 

electronic constraints for the atoms and the molecule are 

removed. The results given in Table IV.4c show that it is 

more the other way around; it is the other two orbitals which 

are preventing these p-n type orbitals from becoming zero in 

nearly all the ring carbons. 

Table IV.4b results from Trial 3 where only the total 

number of electron is constrained. Here we see that the 

tertiary-butyl group has lost 0.7 electrons which was picked 
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up by the ring system. This is in accord with our knowledge 

that the tertiary-butyl group is a strong electron donor when 

attached to a n-bound ring. How precise this conclusion is 

awaits testing on other structures since there are other 

factors involved such as the number of electrons given up to 

bonding. 

Table IV.4c lists the results from Trial 4 in which the 

number of electron was not constrained. In sharp contrast to 

the results for Trial 3, the tertiary-butyl has a net charge 

of -1.8 electrons whereas the ring system has a net charge of 

-2.6 electrons. It is inferred that the reason for the large 

number of electrons lost in the rings relative to the butyl 

group is that they have transferred electrons into both the 

sigma and the n-system from the 2s and the 2p orbitals. The 

tertiary groups however have used only their 2p electrons in 

bonding to the surrounding atoms. 

One should note that an error in the scale factor will 

have an additive effect on the net charge and on the electron 

density difference maps. Thus the values may be slightly 

high or low, depending on the quality of the fit. 

As noted earlier, the tertiary-butyl group shows 

indications of rotational disorder. This will have the 

effect of lowering the number of electrons on the calculated 

promolecule fragment. Hence in Trial 3 the net number of 

electrons may not be as large if this rotational disorder 

were taken care of properly. 



www.manaraa.com

142 

Figures IV.4 are Chemical Difference Density (CDD) maps 

created by subtracting the Trial 2 promolecule (complete with 

oriented orbitals) from the observed electron density. These 

maps, when compared to those of Figures IV.3, exhibit more 

uniform peaks heights and shapes in the bonding regions and 

less noise overall. The hydrogen-carbon bond peak heights 

are generally lower and more uniform. 

The orbitals for Trial 2 are displayed in two different 

formats (described in Appendix E) in Figures IV.5 and IV.6. 

These figures show that the direction of the low occupancy 

orbitals are roughly perpendicular to the rings. Figure 

IV.5b and 6b indicate a definite tilt towards the tertiary-

butyl group. As there is no systematic degree of tilt, it is 

assumed that the source of this effect is in the OkO data, 

perhaps an indication that the weighting or data collection 

scheme is faulted as was found in Chapter III. The atoms 

which had zero occupancy in the perpendicular orbitals were 

given a finite dimension to the ellipsoids so they could be 

drawn. 

CIS of the tertiary-butyl group is more isotropic in its 

valence shell. That it is not completely isotropic is not 

unexpected since the electrophilic action of the four 

adjoining groups is different. If this were the sole source 

of its anisotropy, one would expect cylindrical symmetry 

along the C15-C9 bond; that this is not so is due to the 

systematic error noted for the ring system. 
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Figure IV.4a. CDD map of Trial 2. ring containing Cl (middle 
left). CI-0.1e-/A^ 
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Figure IV.4b. CDD map similar to Figure IV.4a, ring 
containing C8 (middle left) 
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Figure IV.4c. CDD map similar to Figure IV.4a, atoms C9 
(left), CIS, and C16 
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Figure IV.4d. CDD map similar to Figure IV.4a, atoms C9 
(left), CIS, and C17 
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Figure IV.4e. CDD map similar to Figure IV.4a, atoms C9 
(left), CIS, and C18 
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Figure IV.5a. Illustration of the orbital information from 
Trial 2. Pseudo-atoms placed at the ends of 
orbital vectors with sizes related to their 
electron occupancies 
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Figure IV.5b. Side and front views of Figure IV.5a 
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Figure IV.6a. Alternative illustration of orbital 
information using ellipsoids with principal 
axes related to electron occupancy 
superimposed on atomic positions. Ellipsoidal 
orientation is that of the orbitals 
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Figure IV.6b. Side and front views of Figure IV.6a 
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The terminal members of the tertiary group are not near 

what one might expect. This is assumed to be due to the same 

effects noted for CIS as well as the rotational disorder not 

being well accounted for. 

Conclusion 

The study of 9-tert-butylanthracene has shown that, with 

a better dataset, results can be obtained which are 

internally consistent and explainable. Towards this end it 

has proven useful to have a large number of similar bonding 

situations which may be compared with one another. 

The molecule in this case is somewhat less than ideal 

since: 1) it has many hydrogen atoms which are not well 

accounted for, 2) the substituted group shows rotational 

disorder, and 3) there is no chemical symmetry with which to 

perform internal comparisons. The dataset too has every 

indication of being systematically biased in the low-order 

OkO reflections; similar effect was discovered in the high-

order data from the same source for 1,2,3-triazine in the OkO 

direction. The effect is to tilt the orbitals such that one 

is directed virtually parallel to the OkO direction. 

The differences between the TDD maps in Figures IV.4 and 

the CDD maps in Figures IV.5 show that the peaks in the CDD 

maps are more uniform and localized. The interpretation of 

this is that while the distribution of the TDD may not be 
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uniform, the electronic changes which occur upon chemical 

binding (as seen in the CDD maps) are. Thus while some 

carbon-carbon bond peaks are lower (indicating different bond 

strengths) in the TDD maps, the electronic changes needed to 

create the bonds are not different (as seen in the CDD maps). 

The ring-atom orbital information shows that near 

cylindrical symmetry is seen perpendicular to the plane of 

the ring. The orbitals perpendicular to the rings have near 

zero occupancy, presently being explained as a compensation 

for the extra 2s electron contribution in this direction. 

The effect of the systematic error in the data on the orbital 

occupancies is unknown. 
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CHAPTER V. TETRAFLUOROTEREPHTHALONITRILE 

Introduction 

The study of tetrafluoroterephthalonitrile (TFT) is 

presented in this chapter. The data for this structure are 

of the highest quality and resolution available. TFT has 

been previously studiedl4,45,47 (in other respects) which has 

the advantage of eliminating the need for much of the 

preliminary work done in the study of the structures of 

1,2,3-triazine and 9-tert-butylanthracene. 

The structure of TFT is relatively simple with five 

unique atoms per unit cell. The atoms have nearly equal 

atomic numbers which has the effect of allowing all atoms' 

parameters to be determined to equal accuracy. The lack of 

hydrogens is also important in this respect since they were 

not well determined in the other studies discussed in 

Chapters III and IV. 

Three trial structures (1, 2 ,  and 3) are presented in 

this chapter. They represent a high-order refinement of the 

X-type parameters (atomic positional and thermal parameters 

and the overall scale factor) and two of the three types 

electronic constraints which have been discussed in the 

previous two chapters. The Trial 1 structure resulted from 

the high-order refinement and these parameters were used for 

Trials 2 and 3. The Trial 2 structure resulted from a 
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valence shell parameter determination with the electronic 

constraint that each atom remains neutral. The Trial 3 

structure used the no electronic constraints (i.e., the 

molecule was allowed to ionize). A model with the electronic 

constraints allowing only electron transfer was not obtained 

due to difficulties associated with the atoms on special 

positions. 

The electron density functions are shown in two-

dimensional contour maps and in ORTEP-type drawings. The 

features of the maps, drawings, and of the refinement 

procedure are described in Appendix E. 

Preliminary Discussion 

The molecule has crystallographic site symmetry of 2/m 

and is very nearly planar with an rms deviation from 

planarity of 0.004A. The molecular site symmetry reduces the 

number of unique atoms from fourteen to five. Prior studies 

of this compound45'47 have shown that the data are very good 

and comparisons with theoretical calculations are 

favorable!*. 

Several of the atoms lie on a crystallographic symmetry 

element. The number of atomic positional and thermal 

parameters is therefore reduced in the straightforward manner 
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discussed in Chapter II. The orbital parameters also need to 

be constrained as discussed in Appendix D. This requires 

considerable effort in order to determine which of eight 

possible combinations of constraint models best describes the 

valence electron distribution. 

This study used a high-order data cutoff of 0.85Â"^, a 

value which was used in a previous study47'48_ The value of 

the sigma cutoff was chosen to be 0. A value of 20 has been 

used, but such a large value is not considered reasonable as 

is shown in Chapter II. A summary of the pertinent data and 

crystal parameters is given in Table V.l. SCF scattering 

factors were used for all atoms. 

High-Order Refinement 

The initial positions for Trial 1 were obtained from a 

previous study. The atomic positional and thermal parameters 

were refined using a sin(e)/X cutoff of 0.85Â-1. Due to the 

site symmetry of atoms C2, C3, and N, the x coordinates were 

fixed at zero as were the U12 and thermal parameters. 

The resultant atomic parameters are listed in Table V.3 and 

In Table V.4 are the interatomic distances and bond angles. 

Figure V.l shows ORTEP^l drawings of the TFT promolecule, 

illustrating the positional and vibrational information. 
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Table V.l. Summary of data and crystal parameters for TFT 

Chemical formula 
Crystal system 
Space group symbol 
Lattice parameters 

Temperature of data collection 

of reflections 
averaging 

Total number 
Number after 
Number of observed 
Internal agreement® 
Radiation 
Sin( e )/X (min/max, A~^) 

C0N5P4 
ortnorl orthorhombic 
Cmca 
a-7.6848(4)Â 
b-9.7350(6)Â 
C - 9 . 5 5 4 9 ( 7 ) A  
98K 

17740 
2387 
2179 
0.016 
Mo k-, (X=0.71A) 
0.098/1.151 

^Defined as Rint(<l>)»(2k |<l>-|I|)/(|<I>|). 

The refinement statistics are listed in Tables V.5. The 

atomic positional parameters are in good agreement 

(differences were less than la) with prior studies^?. The 

thermal parameters are systematically higher in this study 

which is to be expected since an overall temperature factor 

has not been included in this work. 
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Table V.2. Summary^ of refinement conditions for the trial 
structures 

Refinement Electronic 
Trial parameters constraints 

1 X _ 

2 Y Std 
3 T Ion 

BSee Table III.2 for explanation of terms used. 

Table V.3. Summary of atomic parameters for TFT, Trial 1 

xa y z RMSb 

CI 1565.2(3) 591.2(2) 402.0(2) 0.102 
C2 0 1198.2(3) 808.3(3) 0.100 
C3 0 2419.9(3) 1633.3(3) 0.113 
F 3060.8(3) 1152.3(2) 793.1(3) 0.124 
N 0 3410.7(4) 2296.2(4) 0.139 

011 = U22 "33 "13 "23 "12 

CI 10.1(0) 9.9(1) 11.0(1) -0.4(0) -0 .6(0) -1.0(1) 
C2 11.6(1) 8.5(1) 9.5(1) — -0 .6(0) -

C3 17.8(1) 9.7(1) 10.9(1) - -1 .5(0) — 

P 11.0(1) 16.8(1) 18.2(1) -2.1(0) -2 .2(0) -4.6(0) 
N 29.8(2) 12.5(1) 15.7(1) - -4 .4(1) -

^Fractional coordinates (10~^, A). 

bRms amplitudes of vibration (Â). 

Cu»(l/2%2) g G* (10"3, â2), where the temperature factor 
is of the form exp[(k fi kt)/(4n2)]. 
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Table V.4. Distances ( A )  and angles (®) for Trial 1 

Distance Angle 

CI CI 1.3839(4) CI CI C2 120.45(1) 
C2 CI 1.3952(3) CI CI F 119.93(1) 
P CI 1.3263(3) C2 CI P 119.62(2) 
C3 C2 1.4269(4) CI C2 CI 119.11(3) 
N C3 1.1539(5) CI C2 C3 120.45(1) 

C2 C3 N 179.75(4) 

Table V.5a. (10"4) in reciprocal space zones for TFT 

#Aa 

Trial 

: 1238 
: 2179 
ALL° 

2 
8 

HOO 

2 
10 
OKO 

3 
11 
OOL 

79 
172 
OKL 

28 
62 
HOL 

28 
62 
HKO 

ic 157 121 096 242 168 178 178 
1 506 1035 618 922 636 552 520 
2 413 729 615 936 546 488 453 
3 333 439 457 540 409 372 389 

®Number of reflections in hkl zones for high-order data 
(A) and ail data (B). 

^All reflections used to calculate R#. 

^High-order data only. 
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Table V .5b. R, M (10-4) in sin(0)/X ranges® for TFT 

#Ab 160 371 453 254 
#B 1 14 33 55 102 138 190 246 322 371 453 254 

Trial 

lb 100 147 197 250 
1 416 907 534 556 814 584 334 175 102 147 197 223 
2 555 965 494 462 537 490 346 186 142 160 202 224 
3 237 785 557 380 387 347 275 163 132 158 202 225 

®The sin(0)/X ranges are [n-0.1,n) where n-0.1 to 1.2. 

^High-order data (sin(e)/X > 0.85) only (A) and all data 
(B). 

^High-order data were used to calculated R#. 

Table V.5c. Number of reflections in a{E) (10~^) ranges® for 
TFT 

n= 1 2 3 4 5 6 7 8 9 10 11 >11 
Trial 

lb 844 303 70 18 3 
1 1109 473 157 85 41 35 31 25 17 24 13 169 
2 1067 484 161 100 59 49 27 23 23 24 20 142 
3 1080 510 199 97 55 47 36 27 16 23 18 71 

®The <T(E) ranges are defined as [(n-l)O(E), n E(E)). A 
reflection is counted if it lies in the range specified by n. 

bonly high-order data were used in the calculation. 
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Valence Orbital Refinement 

The valence orbital parameters must be constrained since 

the atoms C2, C3, and N lie on a mirror plane. As described 

in Appendix D, the number of variables are greatly reduced by 

incorporating the constraints but there are two different 

possible models (model A and model B) which may best describe 

the three atoms. 

The procedure followed here was to refine all three 

atoms' orbital parameters first using model A and then using 

model B. This was followed by making eight promolecules 

(corresponding to the eight permutations of models A and B) 

and calculating the LSE for each combination. The 

promolecule with the lowest LSE consisted of using model A 

for C2 and Model B for C3 and N. The LSEs are listed in 

Table V.6. The promolecule was then further refined using 

the neutral-atom constraints to yield the orbital parameters 

listed in Table V.7a. The orbital information is illustrated 

in Figures V.2a and 2b using the technique developed in 

Appendix E. 

The refinement of Trial 2 proceeded without great 

difficulty for atoms Cl, C3, and N. It was difficult to 

determine the correct eigenvectors for atoms C2 and F due to 

the eigenvalues being so similar (Xi^Xg within a for C2 and 

Xl=X2=X3 within 3a for F). This causes the eigenvectors to 

be ill-defined in the least squares determination. Generally 

one would constrain such parameters in order to remove 
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Table V.5d. Refinement results for TFT 

Trial LSE ERF® p) Scale 

l(HO) 1560 0.3131 0.0896 8.87(2) 
1 99984 2.8475 0.3325 — 

2 66584 1.3304 0.3423 — 

3 43343 1.0783 0.2468 

^Modified ERF values as described in Chapter IV. 

Table V.6. LSB for all combinations of models A and B for 
atoms C2, C3, and N 

C2 C3 N LSE 

Models: A A A 64162 
Models: A A B 64163 
Models: A B A 64281 
Models : A B B 64094 
Models : B A A 64238 
Models : B A B 64113 
Models: B B A 64192 
Models : B B B 64192 
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Table V.7a. Orbital parameters for Trial 2 

i Xi ai® bi Ci ûe" 

Cl 1 1.002 -0.047 0.023 -0.999 0.336 
2 0.417 0.935 0.353 -0.036 -0.250 
3 0.581 0.352 -0.935 -0.038 —0.086 

C2 1 0.776 -0.152 -0.488 0.860 0.109 
2 0.467 —0.988 0.073 -0.133 -0.200 
3 0.757 -0.002 0.870 0.493 0.091 

C3 1 0.406 0.709 -0.705 0.011 —0 .260 
2 0.406 0.705 0.709 0.011 -0.260 
3 1.187 0.015 0.000 -1.000 0.521 

F 1 1.613 -0.610 -0.780 0.139 -0.054 
2 1.655 0.713 -0.463 0.527 -0.012 
3 1.733 -0.346 0.420 0.839 0.066 

N 1 0.770 0.703 -0.711 0.015 -0.230 
2 0.770 0.711 0.703 0.015 -0.230 
3 1.460 0.021 0.000 -1.000 0.460 

®See text for explanation of orbital orientation. 
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Table V.7b. Orbital parameters for Trial 3 

i Xi ai* bi Ci 6e- NET^ 

CI 1 0.831 0.004 -0.013 -1.000 0.165 -0.453 
2 0.239 0.979 0.204 0.001 -0.428 
3 0.476 0.204 -0.979 0.014 -0.190 

C2 1 0.646 -0.054 -0.493 0.869 -0.021 -0.415 
2 0.338 -0.999 0.025 -0.049 -0.329 
3 0.602 —0.002 0.870 0.493 -0.065 

C3 1 0.318 0.709 -0.705 0.011 -0.349 -0.246 
2 0.318 0.705 0.709 0.011 -0.349 
3 1.118 0.015 0.000 -1.000 0.452 

F 1 1.458 0.278 -0.181 0.943 -0.209 -0.512 
2 1.468 0.378 0.924 0.066 -0.199 
3 1.563 -0.883 0.338 0.325 -0.104 

N 1 0.633 0.703 -0.711 0.004 -0.367 -0.500 
2 0.633 0.711 0.703 0.004 -0.367 
3 1.234 0.006 0.000 -1.000 0.234 

&See text for explanation of orbital orientation. 

^Net change from neutral atoms number of electrons. 
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N C3 

CI 

Figure V.l Three views of the TFT promolecule showing atom 
identifiers. Symmetry related atoms shown 
for reference. Atomic vibrations represented by 
50% probability ellipsoids. Mirror plane normal 
to ring, passing through atoms N, C3, and C2. 
C2 axis normal to mirror through center of ring 
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Figure V.2a. Illustrations of orbital information using 
pseudo-atoms at the end of the orbital 
direction vectors superimposed on the unique 
atoms of the molecule. Pseudo-atom sizes are 
related to orbital occupancies from Trial 2. 
Molecular skeleton is shown for reference 
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Figure V.2b. Alternate illustrations of orbital information 
in Trial 2. Ellipsoids with principal axial 
lengths related to the electron occupancies 
superimposed on atomic positions. Ellipsoid 
orientation is that of the orbitals 
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* G 

0 0 

Figure V.2c. Illustration of one view of Trial 3 orbital 
information, similar to Figure V.2a, 
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the correlation. 

Applying constraints to C2 is not realistic since the 

orientation of Y3 is fixed perpendicular to the mirror plane 

and the single eigenvector parameter (theta) should be 

essentially independent of any relation between the two 

eigenvectors. For F the eigenvectors should perhaps be 

interrelated but this would mean setting the eigenvalues to 

1.667, thus producing a spherical valence shell where the 

values of the eigenvector coefficients are not relevant. 

In Trial 3 the electronic constraints were removed from 

the total number of electrons, thus allowing the molecule 

(and atoms) to ionize. To do this meant that the constraints 

on X3 (N3 in Appendix D) had to be removed from the model B 

atoms, leaving in place the constraints that X1-X2 since the 

occupancies must still obey the site symmetry. The valence 

orbital refinement results are given in Table V.7b. Figure 

V.2c is an illustration of one view of the orbital 

information. 

and X3 are again equal (within l.Se) for C2 in Trial 

3. The X3 eigenvalue (parallel to the Cl-F bond) differs 

from Xi and X2 by 5a producing a cylindrically symmetric 

valence shell (Xi=X2 within a) parallel to the bond. This 

dictates that X^ should be set equal to X2 and the 

eigenvectors constrained to reflect the local symmetry (the 
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degrees of freedom would be reduce from 3 to 2 in this case). 

Comparison of Figures V.2a and 2c show that the rotation 

about F is very large as one goes from Trial 2 to Trial 3. 

This emphasizes the fact that the orientation of F in Trial 2 

is irrelevant due to the sameness of the eigenvalues. 

The orientations of the a), b), and c) directions in 

Tables V.7 for CI and C2 are as follows: a) is perpendicular 

to the benzene ring, b) is radially outward, and c) is 

tangential to the ring. For F, C3, and N: c) is radially 

outward along their bonds, b) is in the plane containing Cl, 

C2, and the atom in question, and a) is perpendicular to b) 

and c). The signs of the orbital direction vectors may be 

changed at will. 

Discussion 

The valence orbital model (model B) which best describes 

N and C3 matches our chemical knowledge in that the triple 

bond is cylindrically symmetrical along the bond. It is this 

triple bond which also induces the net gain of electrons in 

orbitals parallel to the bond on both atoms in Trials 2 and 

3. By now the valence orbital model (model A) which best 

describes C2 comes as no surprise. The valence orbitals have 

cylindrical symmetry normal to the molecular plane with fewer 

electrons in the orbital perpendicular the plane. Similar 

results were seen for 1,2,3-triazine and 9-tert-

butylanthracene and the rationalization is the same. 
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The fluorine atom is quite close to being spherically 

symmetric in Trial 2 and cylindrically symmetric in Trial 3. 

CIf in contrast to prior experience, has no rotational 

symmetry. As shown later, this is most likely due to the 

differences in the Cl-Cl' and C1-C2 bond density, the orbital 

with the highest occupancy being along the highest density 

(Cl-Cl') bond. The lowest occupancy orbital is still normal 

to the molecular plane, reinforcing previous findings. 

Figures V.3 are maps of the observed electron density 

(note that all contour maps presented in this chapter have 

the small constant background due to E(0,0,0) included 

wherever appropriate). The fragment of the molecule shown is 

the area surrounding the unique atoms, a mirror plane lies 

normal to the molecule and passes through atoms N, C3, and 

C2. 

Figure V.3a shows the expected dominant core features as 

well as the triple bond. Figure V.Sb is 0.4Â above the 

molecular plane and reveals a very intricate pattern which 

may be due to our inability to accurately model this region 

(which includes most of the n bonding) with our promolecule. 

This inability to model the electron density in this region 

can be translated into an inability to calculate the correct 

phases for the reflections. In Chapter II the use of 

incorrect phases has been shown to modify peak heights and 

shapes. An alternative explanation is that these are 

artifacts of the Fourier truncation effect described in 
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Appendix E and illustrated in Chapter II. The latter is not 

as serious as the former since such ripples will be 

subtracted off in the difference maps where we wish to see 

detailed information. Figure V.3c is a view of the N-C3-C2 

axis, normal to the plane of the ring. The density shown 

here is nearly identical to that of Figure V.3a. 

Figure V.4a is a partial difference electron density map 

in which, the core (Is and 2s) electrons were subtracted from 

the observed electron density. Figure V.4b is a similar map 

normal to the plane of the ring. The interpretation of these 

maps is that they show how the valence electrons are 

distributed; some are still localized about the atoms and 

some have moved into the bonding regions. Here we see that 

the triple bond is very large and essentially engulfs the 

nitrogen atom. We also see a hexagonally curved bonding 

ridge around the benzene ring. This electron density lies on 

the inside of the atoms and is centered at the mid-points of 

the internuclear vectors. Although is is not clear on the 

maps, this ring-type electron density tapers off towards zero 

at the center of the benzene ring. The fluorine's valence 

shell is elongated towards the ring, an indication of either 

bonding with CI or electrostatic distortion of its valence 

electron cloud. 

Figure V.5 is a TDD map created by subtracting the 

spherical atoms in Trial 1 from the observed electron 
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Figure V.3a. Contour map of observed electron density for 
TFT, CI"1.0e~/A3. See Appendix E for 
explanation of map features for this and 
all other contour maps 
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Figure V.3b. Similar to,Figure V.3a. View 0.4Â above ring 
CI-0 .5e- /Â3 
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Figure V.3c. Similar to Figure V.3a. View normal to ring 
passing through N (left), C3, and C2. 
CI-1.0e - /Â3 
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Figure V.4a. Partial difference density map. Observed 
density minus Is and 2s electrons. 
CI-O.leVA^ 
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\ 

Figure V.4b. Similar to Figure V.4a. View normal to ring 
passing through N (left), C3, and C2. 
CI"0.1e-/A3 
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Figure V.5. TDD map using spherical atoms 
CI-0.1e-/A3 

from Trial 
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Figure V.6a. CDD map using oriented atoms from Trial 2. 
CI-0.1e-/A3 
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Figure V.6b. Similar to Figure V.6a. View 0.4Â above ring. 
CI-0.1e-/Â3 
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X \ 
X X 

Figure V.6c. Similar to Figure V.6a. View normal to ring 
passing through N (left), C3, and C2. 
CI-0.1e-/AS 
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density. Static deformation maps have been theoretically 

calculatedl4 and the results agree qualitatively (the 

electron density maps calculated in this work are of the 

dynamic density, so called due to smearing of the electron 

density over space and time). 

The features which are most notable are the unequal TDD 

peak heights of Cl-Cl' and C1-C2. The two-to-one ratio is in 

agreement with theory and corresponds to an increased bond 

strengthl4. This effect is also the cause of the non-

cylindrical symmetry of the Cl orbitals (note that the 

orbital with the largest electron occupancy is along the Cl-

Cl' bond. 

The F-Cl bond exhibits a net loss of electrons from the 

spherical-atom promolecule. Theory predicts a build up of 

charge in the center of the bond and a depletion near the 

fluorine atom, these detailed features are not be observable 

due to the smearing effects present in this work. The two-

to-one ratio of the N-C3 and C3-C2 bond peak heights is 

predicted by theory but the prediction of a build-up of 

electrons on the outside of the nitrogen atom is not 

realized. 

The CDD maps created by subtracting the oriented-atom 

promolecule (Trial 2) from the observed electron density are 

shown in Figures V.6. Comparing Figures V.6a and V.5 again 

illustrates an improved accounting for the valence electron 

redistribution in the CDD maps. Figure V.6a still shows the 
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two-to-one Cl-Cl' to C1-C2 peak height ratio, but the 9 bonds 

for N-C3 and C3-C2 have been modeled very well. The (n 

orbitals parallel to the plane of the ring) bonding electrons 

are unaccounted for in the vicinity of the N-C3 bond as seen 

in Figure V.6a. 

Figure V.6b is most illuminating since not only do we see 

n bonding electrons (iip) 0.4Â above the ring in the N-C3 

bond, but also above the Cl-Cl', C1-C2, and the F-Cl 

internuclear vectors. The lack of sigma-type bonding 

electron density in TDD maps of the F-Cl bond is a marked 

feature of this molecule. An examination of Figures V.4a and 

6b indicate there is both sigma and np bonding. The lack of 

positive TDD density is due to the relatively excessive 

amount of electron density subtracted from the bond when 

using spherically averaged, neutral atoms. 

Another feature of Figure V.6b is the N-C3 itp orbital has 

a greater occupancy than does the orbital. It is argued 

from theoretical calculations that some of the np should be 

lost due to a quinoidal-type resonance form in which the C3-

C2 bond has some non-formal Hp character. Neither the C3-C2 

Hp character nor the lower Hp character is found in this 

work. 
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Conclusion 

The dataset is the best which has been used. The 

resolution extends far beyond the deformation density 

scattering range and absent are the errors seen in Chapters 

III and IV. The choice of molecule is good in that the 

atomic scattering powers of the atoms are nearly the same. 

Two features which would have improved this choice are more 

non-symmetry related atoms to which comparisons could be made 

and some type of strong intermolecular interaction which 

would reduce the rigid-body motion found in another study*?. 

The high-order structure determination was carried out 

without difficulties and comparisons between this and other 

studies45,47 g^e favorable. The main difference are in the 

thermal parameters which are systematically higher here owing 

to a lack of an overall temperature factor. 

The orbital refinement was complicated by the site 

symmetry of the atoms N, C3 and C2. It was determined which 

of two possible models best described the atoms, and the 

results, especially for these three atoms, match our 

expectations. The atoms C2 and F developed some difficulty 

in their refinement due to the local symmetry inducing 

correlations amongst the eigenvectors. It was not possible 

to include additional constraints for most of the cases since 

the parameters were already constrained or since the 

constraints essentially consisted of fixing the atom's (F) 

eigenvalues to their spherical free-atom values. 



www.manaraa.com

185 

Theoretical results^^ agreed well on a number o f  points 

observed in the electron density maps but the np bonding of 

and Cl was not predicted and no evidence of the N-C3-C2 

resonance structure was seen. 
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CHAPTER VI. SUMMARY 

Review 

The studies presented in this thesis have shown that it 

is feasible to obtain promolecule information beyond that of 

positional and vibrational parameters. The first step 

towards obtaining valence orbital information is to put aside 

the conventional concept that one is trying to fit the entire 

dataset (i.e., model all of the electron density). It is 

only the core information which can be truly modeled with a 

promolecule. A high-order parameter refinement must be 

completed before meaningful valence orbital information can 

be obtained (this is unfortunate since the very good datasets 

are also rare). From a high-order refinement one obtains 

accurate scale and atomic positional and thermal parameters. 

Beyond the capabilities of the spherical-atom promolecule 

model, orbital information is obtained in the next stage from 

an oriented-atom promolecule. This information consists of 

eigenvalues and eigenvectors of the electron density matrix 

which describes the valence orbitals. The eigenvalues are 

simply the electronic occupation numbers for each orbital. 

The eigenvectors are easily understood for the p-orbitals as 

a rotation matrix which gives the orientation of the p-

orbitals in space. Two methods of illustrating the valence 

p-orbital information, and how they relate to the molecule. 
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have been developed during the course of this research and 

facilitate the understanding of the results. 

Concepts 

The purpose behind a high-order refinement is to obtain 

better promolecule (X-type) parameters, something which can 

only be done using high-order data. This is due to the fact 

that the low-order data consist of: 1) core electron 

scattering, 2) some fraction of the non-bonded atoms' valence 

electrons, and 3) the remaining valence electrons which have 

been modified upon molecular and crystal formation. It is 

this third type of low-order data which we cannot model using 

a promolecule. The high-order data on the other hand 

consists of only the core electrons' contributions, and since 

we can model the core electron scattering very well with a 

promolecule, this is the only place where highly accurate 

parameters can be obtained. For this same reason it is only 

in this high-order data region where statistical analysis 

based on the comparison of the molecule and the promolecule 

can be applied. 

The preceding paragraph is summarized by saying that the 

promolecule does not attempt to fit all of the (low-order) 

data. Instead we attempt to determine how much of the low-

order scattering can be accounted for by a highly constrained 

valence orbital model. The remaining electron density is the 

deformation density. 
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Although the concepts involved in a high-order refinement 

have been around for a number of yearslO, the techniques used 

in standard crystallography still are often incorrectly used. 

It is unfortunate that the standard practices of using an 

overall residual index, secondary extinction corrections, 

refining the scale against all data, etc., have carried over 

into high-order refinements. 

It has been the practice in the past to assume that the 

changes which occur upon chemical bonding are given by the 

observed electron density minus a promolecule consisting of 

spherically averaged atoms. While this approach is 

informative, it is also misleading in that these are not the 

only due to electronic changes, but also include orientation 

changes which involve virtually no chemistry^®'. These 

latter changes account for approximately one half of the 

deformation density as seen in comparisons of TDD and CDD 

maps in Chapters III, IV, and V. 

The net result obtained from this work is that the part 

of the deformation density which is due to energetic changes 

is separated from the information related to the orbital 

effects which do not include chemistry. This separation has 

only been possible in theoryl8,19 until now. 



www.manaraa.com

189 

Prerequisite Considerations 

If a molecule is intended to be studied using the 

advanced concepts described herein, it must first have a 

moderate quality dataset measured in order to determine its 

actual suitability. It is not correct to select a molecule 

without first ascertaining the feasibility of obtaining 

useful results39. 

In Chapter III it was shown that a high-order refinement 

must be carried out before further information is sought. A 

high-order refinement requires data which extends in sin(9)/X 

well beyond the point at which the deformation density 

contributes significantly. This dataset should also be 

highly accurate and free from systematic errors, conditions 

not met by either of the datasets described in Chapters III 

and IV where systematic errors had consequent effects on the 

orbital information obtained. 

The calculated orbitals model the regions of high and low 

slope in the electron density function quite well. This 

reinforces the idea that data collection should be carried 

out at low temperatures in order to sharpen these features. 

It is just as important to carefully select a molecule with 

little disorder or rigid-body motion. This may be 

accomplished by choosing a molecule which has hydrogen 

bonding or using molecular packing and steric hindrance. The 

hydrogen atoms were not considered strongly in this work 
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since a method of dealing with them has not been 

incorporated. They are not suspected of having a serious 

impact on the promolecules' parameters but future work should 

deal with this problem, either by using more appropriate 

scattering factors, by using neutron diffraction data, or by 

calculating the optimal positions using an iterative energy 

minimization approach. 

In order to avoid systematic errors, which are so 

difficult to detect, crystal preparation should be carried 

out carefully. Electron microscopy can give information on 

the crystal's quality. A spherical crystal will not suffer 

from anisotropic absorption effects. Thermal shocking a 

crystal can often improve the mosaic spread of domains within 

a crystal. 

This work has used a number of statistical checks on the 

agreement between the observed and calculated structure 

factors. No single result is sufficient to isolate potential 

problems but, provided care is taken in not reading too much 

into the numbers, the results of the statistical tests 

combine to form a useful diagnostic tool. More involved 

analysis procedures would no doubt be beneficial in future 

work. One of these functions (ERF) was found in Chapter IV 

to be poorly defined and a new definition suggested. This 

function is one which utilizes all data in its calculation 

and thus is used in this work only for comparisons between 
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very similar models using identical data. The use of the 

standard overall residual has been dropped; there is little 

additional information to be gained from its use and it has 

been too often misused. 

Refinement Considerations 

Once the requirements for a dataset have been met, the 

structure solution follows. The first step is to obtain a 

rough idea of the atomic positions. Electron difference maps 

are then calculated with various sin(6)/X cutoffs and the 

deformation density peaks heights are plotted against the 

sin(0)/X cutoff limit. Some point beyond the curve plateau, 

which retains a significant number of reflections, is 

selected as the high-order data limit. 

The X-type parameters (scale, non-hydrogen coordinates 

and thermal parameters) are accurately determined in a high-

order refinement. Once the hydrogen parameters are 

determined using all the data, the high-order structure is 

finished and total deformation density (TDD) maps calculated. 

Proceeding into the realm of orbital parameter 

refinement, one may start with a spherically symmetrical 

valence shell and refine all the valence orbital (Y-type) 

parameters simultaneously. This refinement proceeds until 

the parameter shifts are insignificant and thus the final, 

oriented-atom promolecule model is obtained. From this one 
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may calculate the chemical deformation density (CDD) and 

various functions thereof. The orbital information may also 

be illustrated and examined in ORTEP-type drawings. 

Results 

The main purpose of this work was to determine whether or 

not molecular information beyond that of molecular geometry 

could be obtained. Towards this end much of the work was 

centered in the area of developing a proper procedure for 

obtaining such information. The proof of whether or not the 

results are meaningful lies in both the internal consistency 

of the information, and in the favorable comparison of the 

results with theory and with chemical intuition. 

The dataset for 1,2,3-triazine was known from the start 

to be poor in both its resolution and its quality. A 

systematic study of this compound did however point out many 

of the procedural aspects which were applied in later 

chapters. Its small size and simple molecular geometry 

proved most helpful in this respect. Other than procedural 

aspects, 1,2,3-triazine has shown that the regions of high 

and low slope in the density function can be modeled very 

well, and that the CDD is actually about half of the TDD. 

The dataset for 9-tert-butylanthracene was of higher 

resolution and the molecule provided a very large number of 

aromatic carbons which promised a good internal comparison. 
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Both the dataset and the choice of molecules were found to be 

flawed during the latter stages of refinement however. The 

weights used in the weighted least squares refinement had a 

systematic error in the OkO reciprocal space direction. This 

error induced a tilt of all the orbitals in this direction. 

The tertiary-butyl group on this molecule is also suspected 

of being rotationally disordered which essentially smears the 

electron density reducing the ability to obtain good results. 

9-tert-butylanthracene did provide insight into how 

orbitals on aromatic carbons would look using the oriented-

atom promolecule. It has shown that the orbital 

perpendicular to the aromatic plane is of much lower 

occupancy relative to the orbitals in the plane of the ring. 

As described in Chapter IV, this is probably due to the 

excess 2s electrons density in the direction of the p-n 

orbital. 

Tetrafluoroterephthalonitrile had the best dataset with 

respect to both resolution and accuracy. Prior high-order 

studiesl4f47 allowed comparisons of both the parameters and 

the electron density maps. A comparison with theoretical 

calculations has shown that the qualitative results agree 

favorably in most respects. However there are features 

indicated by theory which could not be seen in the dynamic 

deformation maps and vice versa. A theoretical calculation 

of the dynamic CDD could clear up these discrepancies. 
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The requirement'that the atoms remain in their ground-

state was relaxed in this work. From a simple point of view 

one may apply constraints which would prevent an energy 

increase due to electron pairing. The constraints would 

result in a configuration which would be a subset of the 

linear combination of states which make up the ground-state. 

As examples, the constraints for boron and carbon would be 

that the electron occupation numbers remain in the range 

[0,1]. For nitrogen the values should be fixed at 1. For 

oxygen and fluorine the range is [1,2]. 

The results for the three compounds studied show that, 

for carbon, the eigenvalues nearly realize the above 

restrictions (maximum deviation is 0.19 electrons). The 

fluorine atom in TFT is within the specified range. The 

nitrogen atoms in both 1,2,3-triazine and TFT have a maximum 

deviation from 1 of 0.45 electrons. While both conform to 

expectations, they represent the largest deviation from the 

ground-state of the atoms studied so far (note that no 

orbital information would be available from the nitrogens if 

their occupation numbers were fixed to 1). 

Future Work 

The basic goal of this work has been to determine the 

feasibility of calculating valence orbital parameters. A 

more in-depth study remains to be carried out which this work 



www.manaraa.com

195 

has made possible. A mathematical analysis of the CDD for 

information about the nature of chemical binding and the 

insights it might provide should be carried out. 

The statistical analysis and correction of the data for 

systematic errors are also clearly deficient. In future work 

modified corrections for errors such as secondary extinction 

should be explored and better definitions of the residuals at 

low angles are needed; both are formidable challenges due to 

the relatively poorer fit in the low-order data region. It 

may be necessary to calculate the corrections using molecular 

models which do fit the entire dataset, or perhaps bonding 

functions which approximate the bond electron density. 

Studies of other light atom molecules would provide a 

broader basis upon which comparisons could be made. 

Expansion into heavy atom molecules, such as organometallics, 

is mandatory for future work since it is in these many 

electron system where theoretical work falls short due to 

computational difficulties. 

The concept of the oriented-atom promolecule has been 

expanded in this work. The promolecule's valence shells were 

allowed to transfer electrons and even ionize. The 

significance of these results await further testing as well 

as theoretical considerations. The promolecule which is 

allowed to ionize is especially intriguing since it is the 

best model to describe the atoms' valence orbitals which have 

lost electrons to the bonds. 
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In regards to ORALS which was written for this work, 

modification is needed so that refinement is carried out 

against I(k) instead of |E(k)| as is presently done. Further 

expansion of the statistical analysis routine would also be 

warranted, incorporation of disorder and 

librational/translational rigid-body corrections are also 

needed to increase the accuracy of the results and enable a 

detailed analysis of valence orbital information without 

errors introduced by poor core electron modeling. 
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APPENDIX A. LEAST SQUARES METHODS I AND II 

Method I; Minimizing (|E|-|F|)2 

No phase (0%) information is used in the calculation of 

the normal equations. This has an advantage in the early 

stages of refinement when the atomic positions, which have 

the largest effect on the phases, are not well known and thus 

subject to change. This method has less of an advantage in 

the later stages of refinement since only the weakest (least 

significant) reflections are apt to show any significant 

change in phase. The k dependence of E(k), F(k), and is 

dropped from all equations to simplify their appearance. 

The derivation starts with the equation to be minimized 

7-ZJÇ ( |E|-|F| )2 (A.l) 

which, at the minimum, has the property 

37/OAv)-0 (A.2a) 

-2 Zk (|E|-|F|) 3(|E|-|F|)/36v (A.2b) 

where ûv is the shift in the parameter v. 

Expanding the latter term in Equation (A.2b) in a first 

order Taylor series we see that 

a ( | E|T|F|)/3Av»-9/3ÛV [F' cos(A)+F" sin(a) 

+ Ep [(3F' COS(a))/3r*(3F" sin(a))/3r] ûr (A.3a) 

=-3|F|/3v (A.3b) 

since |E| does not change with a change in parameters, 

|F|=F' cos(a)+F" sin(a), (A.4a) 

cos(a)=F'/|F|, (A.4b) 



www.manaraa.com

198 

and 

sin( a)"P*'/l F| • (A.4c) 

Thus 

O-Ejç (|E|-|P|) (-3|P|/av) (A.5a) 

from which, upon insertion of the Taylor series expansion 

into Equation (A.3a) and simplifying, 

O-Ejc [(|E| - | F | ) - E r  3| F|/3r ûr] 3| F|/3v. (A.5b) 

Equation (A.5b) may be rewritten to yield the normal 

equation 

Ejç Eg 3|F|/3v 3|F|/3r Ar-Ej^ [|E|-|F|] 3|F|/3v. (A.5c) 

The weighted form of which is 

Ek wjt ^r 3|F|/3v 3|F|/3r ûr-

Ek Wk [|E|-|F|] 3|F|/3V (A.5d) 

and is of the form 

E A ^  ^  #  (  A  •  5 e  )  

Since, in the normal process of computing the structure 

factor, phase information is already included (i.e., F is 

computed from the model, not |F|), the phase information must 

be removed from the structure factors as shown in Equation 

(A.4a). In practice the derivatives of F' and F" (see Table 

II.4) are calculated and, using the relations in Equations 

(A.4), the derivatives in Equation (A.5e) are computed using 

3 I F I/3V«3F'/3V cos(A) + 3F"/3v sin(a). (A.6) 
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Method II: Minimizing (E-F)2 

The use of this minimization procedure implies either 

that the exact phases are known or that the phase for each 

reflection will not change upon refinement. The former is 

difficult to realize since there are few sources of exact 

electron density functions for entire molecules, let alone 

molecules in a crystal lattice, it is easier to realize the 

situation where, if the phases have been calculated by 

fitting a molecular model to the structure factors for 

example, one may transfer the phases determined to another 

situation where the model cannot be determined so accurately. 

The latter argument, that the phases will not change, is 

actually a good approximation (n.b. nothing has been said 

about the accuracy of the phases) since it is usually the 

least significant 1% of the reflections for a centrosymmetric 

structure or so which change during refinement once the model 

is in the final stages of refinement. 

This method starts with minimizing the quantity 

9-2% (E-F)2 (A.7) 

which, at the minimum, has the property 

37/aûv-O (A.8a) 

-2 Ejj Re{(E-F) 9(E-F)*/36v) (A.8b) 

where the * denotes the complex conjugate and stems from 

the complex nature of the structure factors. 

Expanding the latter term in a first order Taylor series 
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expansion 

3(E-F)*/3ûv-

-3/3AV [ p'-i F" + ZJÇ (3F'/3r-i 3p"/3r) ûr (A.9a) 

— ( 3FV3v-3F"/3v) . (A.9b) 

Thus 

0-2% Re((E-F) (-3F'/3v+i 3F"/3v)) (A.10a) 

from which, upon insertion of the Taylor series in Equation 

(A.9a), 

O-Zk [(E'-F'-Ef 3F'/3r Ar)(3F'/3v) 

+(E"-F"-2r 3F"/3r 6r)(3F"/3v)] (A.10b) 

yields the normal equation matrix 

Zjç Lj. (3F'/3r*3F'/9v+3F"/3r*3F"/3v) ûr-

Zk [ (E'-F')*3FV3V+(E"-F" )*3F"/3V] (A.10C) 

and is of the form A x-b (see Equation (A5.d)). The weighted 

form of the equation is 

Ek Wk Sr (3F'/3r*3F'/3v+9F"/3r*3F"/3v) ûr» 

ZK WK [(E'-F')*0F'/9V+(E"-F")*3F"/3V]. (A.lOd) 

Equation (A.lOd) is essentially the simultaneous 

refinement on the real and imaginary parts of the structure 

factor which are treated as separate entities, each 

contributing to the parameter shifts (A* x'-b' and A" x"-b" 

such that X - X ' + X " ) .  
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APPENDIX B. <jL(k)>ij 

Introduction 

In order to obtain meaningful and accurate results from a 

fit of calculated atomic orbitale to the experimental 

electron density one must start with accurate atomic 

scattering factors. The scattering factors are obtained from 

the Fourier transform (FT) of the atomic orbital 

wavefunctions (Y"Rni(r) Yim(Q)). As is shown in Equation 

(II.13a), the radial part is transformed separate from the 

angular part. 

Hartree-Pock wavefunctionsSS were used to calculate the 

scattering factors used in the past in this laboratory. More 

accurate wavefunctions49-52 are available and, due to the 

accuracy required in this research, self-consistent-field 

(SCF) calculated wavefunctions'®^'were used. 

The procedure to FT the radial wavefunctions has been 

formulated into the computer program JLK. The equations used 

and the details of the program are described here. 

Fourier Transform of Rni(r) 

The radial wavefunctions used are of the form; 

Rni(r)=rl Ni(Ck) exp(-Ck r) (B.l) 

where r is in Â, 1 is the orbital angular momentum quantum 

number, k runs over all coefficients C^, Ni(Ck) are 
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normalization constants given by (2Cjç)^+3/2 [(21+l)i]l/2, 

Ck"* a and g are positive and g # 1. 

The FT of Ri(r) is given by Equation (11.10) as 

<jL(k)>ij"Iodr ji/k r) R i(r) R j(r) (B.2) 

where i and j denote nj^l^ and njlj for the atom in question, 

L ranges from [l^-ljl to li+lj by twos, k is sin(0)/X in A~^, 

and j^fk r) are the spherical Bessel functions^S whose 

functional form is: 

jn(*)"(-l)" [d/(x dx)]" (sin(x)/x) (B.3a) 

with the recursion relation 

in+l-(2n+l)/x in(x)-in-l(x)' {B.3b) 

Programing Aspects 

For practical purposes the values of k are limited to 56 

values in the range from 0 to 2Â~^. The values at k=0 are 

obtained by taking the integer nearest the values at k-k^ 

(the values at k=0 are either 0 or 1). 

The values of a, 0, and are stored for each atom in a 

file (COEFF) which is read by the program JLK. The 

integration in Equation (B.2) is carried out using a 

rectangular summation approach. The integration limits and 

intervals are read from the JLK.PAR file. The integration 

parameters are generally different for each atom. Each 

atomic scattering factor is typically calculated in three 

ranges of r, the results being summed. 
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During the integration various expectation values 

S"-2 to 2, 4, and 6) are calculated. These values and the 

maximum value of Rni(r) are useful for checking the accuracy 

of the integration and of the wavefunction against literature 

values50"52. 

The final calculation performed involves the computation 

of the total (spherical) scattering factor. This is done by 

^^ph(k)"Ei n <jo(k)>ii (B.4) 

where n is the number of electrons in each orbital 0^1^ 

(summed over m^). The resultant values of fgphfk) and 

<jL(k)>ij for each atom are stored in a file (SF). 

Due to the large number of operations involved, double 

precision is used throughout JLK. 

Interpolation 

Use of the functions require an accurate interpolation 

scheme which does not require a large number of operations. 

A reasonable balance is obtained by using Lagrange's three-

point interpolation formula 

f(x)" (x-xl)(x-x2) *fn+ (x-xO)(x-x2) *fi 
(xO-xl)(x0-x2) (xl-xO){xl-x2) 

+ (x-xO)(x-xl) *f9 (B.5) 
(x2-xO)(x2-xl) 

where xO<x<xl. 
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Figure B.l. Scattering factors curves for carbon 
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Figure B.2. Orbital electron density functions for carbon 
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Results and Discussion 

Figure B.l illustrates the calculated orbital scattering 

factor curves for carbon. For comparison the total spherical 

curves from the HF wavefunctions and from these calculations 

are also shown. Figure B.2 shows the corresponding radial 

electron probability functions for carbon weighted by the 

number of electrons. A numerical listing of the radial parts 

of the scattering factors for carbon are listed in Table B.2. 

The curves show that the HF values cause a small 

underestimation of the scale factor and/or produce a 

temperature factor error. This is discussed in Chapter III. 

Comparison of the calculated values of <r^> with 

literature values show good agreement. These values are not 

a direct indication of the quality of the radial 

wavefunctions. They do, however, permit a comparison with 

wavefunctions which are known to be of high quality (from 

energy calculations). The results for carbon are shown as an 

example in Table B.l. The values from reference (53) are of 

lower quality whereas the values from reference (52) are of 

the highest quality available. The results from this work 

are not in exact agreement with those listed in reference 

(50) due to differences in the evaluation of Equation (B.2). 

Calculation times for these curves are large. Due to the 

nature of the Bessel functions (steep slopes and 

oscillating)/ this is unavoidable and small integration 

intervals must be used. 
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The scattering factors for all atoms from helium to 

calcium have been calculated by this method. As this 

exhausts the present source (except for gallium and xenon), 

the remaining atomic wavefunctions may be obtained 

elsewhere®^. 

Table B.l. The radial expectation values for carbon 

s <rS>a <rS>b <rS>c <rS>d 

Is: -2 65.237 65.239 65.241 
-1 5.6644 5.6647 5.6644 5.6644 
1 0.26844 0.26842 0.26844 0.26844 
2 0.097199 0.097179 0.097200 0.097199 
4 0.024634 0.024620 0.024634 
6 0.012176 0.012171 0.012177 

2s: -2 3.2564 3.27051 3.25654 
-1 0.89679 0.89887 0.89680 0.89680 
1 1.5894 1.5858 1.5894 1.5893 
2 3.0532 3.0380 3.0532 3.0521 
4 18.221 17.995 18.222 
6 188.92 184.66 188.93 

2p: -3 1.6903 1.6618 1.6903 1.6918 2p: 
-2 0.89199 0.87764 0.89200 
-1 0.78351 0.77513 0.78351 0.78350 
1 1.7142 1.7425 1.7142 1.7145 
2 3.7431 3.8897 3.7431 3.7468 
4 31.795 35.143 31.795 
6 30 591.23 489.33 

®This work. 

^Reference 53. 

•^Reference 50. 

^Reference 52. 
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Table B.2. Values of <jL(k)>ij for carbon 

k fsph(k)* lOlOQb 20100 21101 20200 21201 21210 21212 

0.00 6.000 1.000 0.000 0.000 1.000 0.000 1.000 0, .000 
0.01 5.991 1.000 0.000 0.003 0.998 0.034 0.998 0, .001 
0.02 5.964 1.000 0.000 0.006 0.992 0.067 0.990 0, .004 
0.03 5.919 0.999 0.000 0.008 0.982 0.100 0.978 0, .009 
0.04 5.858 0.999 -0.001 0.011 0.968 0.132 0.962 0. .015 
0.05 5.781 0.998 -0.001 0.014 0.951 0.162 0.941 0. .023 
0.06 5.690 0.998 -0.002 0.017 0.931 0.190 0.916 0. ,033 
0.07 5.585 0.997 —0.002 0.020 0.907 0.216 0.889 0. 043 
0.08 5.469 0.996 -0.003 0.022 0.881 0.240 0.858 0. ,054 
0.09 5.342 0.995 -0.004 0.025 0.852 0.262 0.825 0. 066 
0.10 5.208 0.994 -0.005 0.028 0.821 0.281 0.790 0. 078 
0.11 5.067 0.992 —0.006 0.030 0.788 0.297 0.753 0. 091 
0.12 4.921 0.991 -0.007 0.033 0.754 0.311 0.716 0. 103 
0.13 4.772 0.989 —0.008 0.035 0.718 0.322 0.678 0. 114 
0.14 4.621 0.988 -0.009 0.038 0.682 0.331 0.640 0. 126 
0.15 4.469 0.986 -0.011 0.040 0.646 0.337 0.603 0. 136 
0.16 4.318 0.984 -0.012 0.043 0.609 0.341 0.566 0. 146 
0.17 4.168 0.982 -0.014 0.045 0.573 0.343 0.529 0. 155 
0.18 4.022 0.980 -0.015 0.047 0.537 0.344 0.494 0. 163 
0.19 3.878 0.977 -0.017 0.049 0.501 0.342 0.460 0. 170 
0.20 3.739 0.975 -0.018 0.051 0.467 0.338 0.428 0. 176 
0.22 3.475 0.970 -0.022 0.056 0.401 0.328 0.367 0. 185 
0.24 3.232 0.964 -0.026 0.059 0.339 0.312 0.313 0. 190 
0.25 3.119 0.961 -0.028 0.061 0.310 0.304 0.288 0. 192 
0.26 3.012 0.958 -0.029 0.063 0.283 0.294 0.265 0. 192 
0.28 2.815 0.952 -0.033 0.066 0.233 0.274 0.222 0. 192 
0.30 2.639 0.945 -0.037 0.069 0.189 0.252 0.186 0. 189 
0.32 2.485 0.938 -0.041 0.072 0.150 0.230 0.154 0. 184 
0.34 2.349 0.930 —0 « 046 0.074 0.117 0.209 0.128 0. 178 
0.35 2.288 0.926 -0.048 0.075 0.102 0.198 0.116 0. 175 
0.36 2.231 0.922 -0.050 0.076 0.088 0.188 0.105 0. 171 
0.38 2.128 0.914 -0.054 0.078 0.065 0.168 0.085 0. 163 
0.40 2.039 0.905 -0.058 0.079 0.045 0.149 0.069 0. 155 
0.42 1.962 0.896 —0.062 0.081 0.029 0.132 0.056 0. 146 
0.44 1.894 0.887 —0.066 0.082 0.016 0.116 0.044 0. 138 
0.45 1.864 0.882 —0•068 0.082 0.010 0.108 0.039 0. 134 
0.46 1.836 0.878 -0.069 0.083 0.006 0.101 0.035 0. 130 
0.48 1.785 0.868 -0.073 0.083 -0.002 0.087 0.027 0. 121 

*These terms are the scattering factor for the 
spherically averaged atom and are obtained by 
Ei #e- <jo(k)>ii' 

^The five terms are n^, 1^, nj, Ij, and L. 
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Table B.2. Continued 

k fgph(k) 10100 20100 21101 20200 21201 21210 21212 

0.50 1 .740 0 .858 -0. 077 0 .083 -0 .008 0 .075 0. 020 0. 114 
0.55 1 .649 0 .832 -0. 085 0 .083 -0 .016 0 .050 0. 009 0. 095 
0.60 1 .578 0 .805 -0. 091 0 .082 -0 .018 0 .031 0. 002 0. 079 
0.65 1 .519 0 .778 -0. 097 0 .080 -0 .016 0 .017 -0. 002 0. 066 
0.70 1 .466 0 .749 -0. 101 0 .077 -0 .012 0 .007 -0. 004 0. 055 
0.80 1 .367 0 .692 -0. 107 0 .070 -0 .003 -0 .004 -0. 006 0. 038 
0.90 1 .269 0 .634 -0. 108 0 .063 0 .006 -0 .009 -0. 005 0. 026 
1.00 1 .171 0 .578 —0 • 106 0 .055 0 .011 -0 .010 -0. 004 0. 018 
1.10 1 .073 0 .525 -0. 101 0 .047 0 .015 -0 .010 -0. 003 0. 013 
1.20 0 .977 0 .475 -0. 096 0 .040 0 .016 -0 .009 -0. 003 0. 009 
1.30 0 .886 0 .428 —0 • 089 0 .034 0 .017 -0 .008 -0. 002 0. 007 
1.40 0 .800 0 .385 —0 • 082 0 .029 0 .016 -0 .007 —0 • 002 0. 005 
1.50 0 .721 0 .346 -0. 075 0 .025 0 .016 -0 .006 -0. 001 0. 004 
1.60 0 .649 0 .311 -0. 068 0 .021 0 .015 -0 .005 -0. 001 0. 003 
1.70 0 .583 0 .279 —0 • 061 0 .018 0 .013 -0 .004 -0. 001 0. 002 
1.80 0 .523 0 .250 -0. 055 0 .015 0 .012 -0 .004 —0 • 001 0. 002 
1.90 0 .470 0 .224 -0. 050 0 .013 0 .011 -0 .003 -0. 001 0. 001 
2.00 0 .422 0 .201 -0. 045 0 .011 0 .010 -0 .003 0. 000 0. 001 
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APPENDIX C. EXAMPLE OP p{r) AND f(k) 

p(r) and f{k) for Carbon 

It is interesting to examine the electron density and its 

Fourier transform. The general rules for understanding 

spherical components of Pa(r) and their transforms are 

relatively simple, namely 1) a Gaussian function transforms 

into another Gaussian (n.b. to first order pa(r) is well 

described by a Gaussian function), 2) a sharp function 

transforms into a broad function, and 3) the converse of 2). 

These aspects of Fourier transforms are readily seen in the 

radial electron density functions of carbon and their 

transforms as shown in Figures B.l and B.2. 

Standard crystallographic practice dictates the use of 

spherically averaged groundstate atoms and their spherical 

scattering factors. The relation between real and reciprocal 

space is easily understood by applying the rules described 

above. Here however aspherical atoms are to be used. How 

then does the Fourier transform of the aspherical part of the 

electron density appear in reciprocal space? 

Perhaps the easiest way to answer this question is to 

show an example involving the calculation of fa^yf(k) for 

carbon. 

By assuming that the atomic core is comprised of 
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(Is2)2(2s2)2, one may disregard these orbitals since they are 

directionally isotropic. The three orbitals are the 

anisotropic components, with reciprocal space functions being 

f2p(k), and are all mutually orthogonal. Writing out these 

valence functions explicitly according to Equations (11.13) 

yields 

<21T 21T>; <jo(k >21 Wo(ll,ll)*Yoo (C.la) 

and <j2(k >21 [V2(11,11)*Y22/J2+W2(11,11)*Y201 

<210 210>; <jo(k >21 Vo(10,10)*Yoo (C.lb) 

and <i2(k >21 V2(10,10)*Y20 

<2111 211>; <jo(k >21 Wo(ll,ll)*Yoo (C.lc) 

and <i2(k >21 [V2(ll,ll)*Y22/(j2)+W2(ll,ll)*Y2o] 

which simplify to 

<21T|21T>: <jo(k 

and <j2(k 

<210|210>; 

and 

<211|211>; 

and 

<jo(k 

<jo(k 

<io(k 

<j2<k 

> 2 1  

>21 [(3/2)*(h2-k2)/|h|2 

+(l/2)*(l2-|h|2)/|h|2] 

>21 

(C.2a) 

(C.2b) 

>21 (-l/2)Ml2-|h|2)/|h(2] 

>21 (C.2c) 

>21 [(-3/2)*(h2-k2)/(h|2 

+(l/2)*(l2_|h|2)/|h|2]. 

The values of <jo(k)>2l have only a radial dependence; 

thus the angular dependence is evidenced only in the latter 

functions for each orbital. The values of <j2(k)>2l are zero 

at k»0, thus giving the expected result that the reciprocal 
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space origin has no angular dependence. As k increases so 

does the function <j2(k)>2i until k«0.26 where it starts to 

decrease (as seen in Table B.2). The radial function 

<jo(k)>21 o" the other hand decreases as a function of k, the 

net result being a relatively greater importance of the 

angular orientation of the p orbitals at moderate values of k 

which correspond to the region of maximum electron density in 

the radial function R2i(r). 

The angular dependence of the reciprocal space 2p 

orbitals are given in the [] brackets and are quadrupolar in 

nature (whereas the 2p orbitals are dipolar). Plots of 

Yii(G) and its transform are shown in Figures C.l and C.2 

respectively. It is seen that when k is along the lobes, the 

plane normal to k passes through the node and thus intercepts 

no electron density. The magnitude of the scattering factor 

is therefore less than the average and the corresponding 

function in reciprocal space is negative, i.e., it reduces 

the scattering factor in that direction. 

When k is perpendicular to the lobes of the p orbital, 

the plane normal to k passes through the maximum electron 

density. This is reflected in reciprocal space by the 

smaller, positive lobes which cause an increase in the 

scattering in this direction (since the electron density is 

higher than the average). 
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Figure C.l. Plot of Yii(a) in xy plane 

Figure C.2. Plot of Yii(Bk) in hk plane 
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One final consideration is that of symmetry. It is 

easily argued that 1) the symmetry of the reciprocal of the 

orbitals each have the same symmetry as the orbitals 

themselves, 2) the sum over the reciprocal space functions is 

spherically symmetric (since the same is true in real space), 

and 3) that for any rotation operation (R3(Q)) performed in 

real space, an identical operation (R3(Gk)) must be applied 

in reciprocal space. ...Both .1) and 2) are shown to be true, in 

this example, by examination of Equations (B.2). The third 

argument is easily seen by considering how the maxima and 

minima in the scattering factor change when the orientation 

of ah orbital changes. 
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APPENDIX D. EXAMPLES OF CONSTRAINING U 

Atom on a Mirror Plane 

Consider an atom with a p-orbital valence shell lying on 

a crystallographic mirror plane perpendicular to a in an 

orthorhombic space group. Since the space group is 

orthorhombic, the Px orbital is parallel to a, Py is parallel 

to b, and Pz is parallel to c. This implies two possible 

models; model A having Y3 perpendicular to the mirror plane 

and model B which has Yg lying in the mirror plane. There 

are other definitions which one could make but they reduce to 

these two models by permutation of the axes. By parametizing 

these two models we derive the constrained U matrix 

A I2 l3_ 

Py cos(0) -sin(0) 0 

Pz sin(6) cos(9) 0 (D.la) 

Px 0 0 1 

with no special constraints on N for model A and 

B l2 l3_ 

Py -sin(9)//2 -sin(6)//2 cos(e) 

Pz cos(0)//2 cos(0)//2 sin(0) (D.lb) 

Px -1//2 1//2 0 

with the constraint on N that Ni=N2 for model B. 0 

represents free rotation about the a-axis in both models. 
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The derivatives of each U matrix element w.r.t. 9 are 

needed to form the normal equations matrices with 9 as the 

adjustable parameter. The derivatives of famn(k) W'f't. U^j 

can be shown to be related to the derivatives w.r.t. 9; viz 

A Yi Y3 

py 3fa/3Uii*Ui2 -3fa/3Ui2*Ull 0 

Pz -3fa/3Ui2*Uii 3fa/3Uii*Ui2 0 (D.2a) 

Px 0 0 0 

for model A and 

B Jl. 12. l3. 

Py -3fa/9Uii*U2i -3fa/3Uii*U2i -3fa/3Ui3*U23 

Pz 3fa/3Ui2*Uii 3fa/3Ul2*Ull -3fa/aU23*Ul3 (D.2b) 

Px 0 0 0 

for model B. The derivatives w.r.t. are obtained in the 

standard fashion. 

Solving the normal equations yields the shifts in 9 from 

which a new U matrix can be formed. The "correct" model 

would then be that which best fits the experimental data. 

Atom on a C2 Axis 

Considering an atom with a p-orbital valence shell lying 

on a crystallographic C2 parallel to the a axis in an 

orthorhombic space group, we again derive two possible 

models. Model A has T3 along the symmetry axis and Model B 

has Yg perpendicular to the symmetry axis. 
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The U matrices which represent the models are identical 

to those in Equations (D.l). However the constraints are 

quite different. It can be shown that the N values for model 

A must have N1-N2. By considering the total electron density 

one can see that Ni*Yi2+N2*Y2^ has cylindrical symmetry and 

thus the 9 parameter can be set to zero. The only parameters 

to adjust are the occupancies for which there are two 

constraints (other than 0<Ni<2) and thus only one parameter. 

Examination of model B reveals that it is identical to 

model B above and the procedure given there must be followed. 

Atom on an Inversion Center 

While the wavefunctions are not symmetric w.r.t. 

inversion in general, the atomic orbitals are. This implies 

that there are no special constraints to be considered when 

only inversion site symmetry exists. 

Atom on Higher Site Symmetry 

As the site symmetry increases, the constraints generally 

become increasingly more stringent. Generally there will be 

one or two possible models for which adjustment of the 0 

values need be made. Other cases will have the U 

coefficients fixed. Each case however will have to be 

treated individually; when one uses d-orbitals there will be 

more models and also more parameters. 
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APPENDIX E. REFINEMENT PROCEDURES AND ILLUSTRATIONS 

ORALS 

All refinements described herein have been carried out 

using the computer program ORALS (ORiented-Atom Least 

Squares). Tests of the program operation have shown that the 

program operates correctly. Comparisons of the full matrix 

refinement from ALLS^* with the standard refinement of the 

simplest of promolecules in ORALS have been carried out and 

the results are consistent. 

The accuracy which is obtainable from the file structure 

presently used is about 10"^ in the residuals and 10"^ in the 

promolecule's parameters. This limitation is due to the 

limited precision of the numbers stored in data files and of 

the number of bits used in the computations. While little 

can be done with the observed structure factors, it would be 

possible to increase the precision of the promolecule's 

parameters by storing them in either a free- or an 

exponential-format. This would allow the precision for each 

value to be the same (as it now exists, the scale factor has 

7 significant figures whereas the anisotropic thermal factors 

have approximately 4). 

Results of the statistical analyses (see Chapter II for 

definitions of the quantities) and the parameter shifts are 

included in the diagnostic output from ORALS. The exact 
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definition of each of quantity which appear can be important 

and is therefore described below. 

The "Total number of reflections" is an exact count of 

the number of reflections read from the HKL data file. 

Reflections which have a special bit set (such as if the 

observed intensity were less than zero) are counted as 

"flagged to be skipped" and no further use of the reflection 

is made. 

Reflections which lie outside a selected sin(9)/X range 

[min,max] are counted and discarded. If a reflection has 

|E(h)|<cutoff*e(E) then it too is counted and not 

subsequently used. Optionally, all reflections (including 

those which are to be discarded) are written to a new HKL 

file. 

Of the remaining data, those reflections which are in the 

high-order sin(0)/X range [HOmin,HOmax] are also counted for 

reference purposes. If a reflection has |F(k)|=0 then it is 

counted (and listed for the first cycle only) and discarded. 

The remaining reflections are used and are listed as "total 

number used" and include both high- and low-order data. 

Next the "Number of variables" are listed for the x-type 

parameters (scale and all standard atomic parameters), the Ni 

parameters (total # of variable eigenvalues) and the Uij 

parameters. These are accurate representations of the total 

# of variables of each type at the start of the refinement 
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run. Note that during a least squares refinement run it is 

possible in special cases for a variable not to vary (such as 

a non-positive definite temperature factor or a non-

physically meaningful eigenvalue). 

It is important to realize the the number of reflections 

and the number of variables are the totals (i.e., they are 

not split into high- and low-order contributions) for a 

specific run (i.e., the variables will be less than or equal 

to the true total). For this reason the "Data/Variable 

ratio" and "Error of fit" may need.to be calculated in the 

final analysis by hand. 

For each refinement cycle the results of several 

different statistical analyses are written so that one may 

judge the correctness of the adjusted model. These values 

are calculated before the parameters are adjusted. 

The residuals R, R^, and Rj, for the reciprocal space 

zones and for sin(0)/X subranges ([n-0.1,n] 

n-0.1,0.2,0.3,...) are calculated and written along with the 

number of reflections in each of these subgroups. The 

average values of |E(k)| and |F(k)| are written for each 

sin(9)/X subrange also. 

The number of reflections which have |E| in the subrange 

[{n-l)a(E),na(E)] for 0=1,2,3,... are computed to permit a 

check for poorly fit reflections. The number of phases which 

change sign (for light atom, centrosymmetric structures) is 
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optional ly  l isted as  a function of  both STOL and the s igma 

subranges mentioned above.  

Also l isted prior to  each ref inement cycle  are the LSE, 

ERF, DWd, and o(p) .  The value of  LSE i s  the most  important 

and should never increase between one ref inement and the 

next .  

Each of  the above values depends on the type of  

ref inement being cafried out  and i s  coupled with the data 

being used.  For example,  i f  the entire data set  i s  read but 

only a high-order ref inement i s  being carried out ,  the LSE 

may not  decrease.  This  type of  caveat  i s  true for a l l  

values,  and i s  why the LSE and other values are often l isted 

twice (once for the high-order data only and once for al l  

data)  in the tables  of  this  thesis .  The est imated standard 

deviat ions (esd's)  for al l  the variables  were calculated 

using only the data subset  which was used for their  

ref inement.  

Although a ref inement may be carried out  on both the 

high-  and low-order data s imultaneously,  convergence i s  not  

guaranteed.  All  results  reported here use separate high-  and 

low-order ref inements .  

After the f inal  parameter ref inement cycle  the 

correlat ions between parameters  and the est imated standard 

deviat ions are (optional ly)  written along with the shifts  

which were calculated to be applied ( i .e . ,  undamped).  
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If the spectral representation matrices U are refined, 

the empirical shifts AU-Unew-Ugid are displayed and during 

the last refinement cycle the actual Atamn values with their 

esd's are written. If the orbital occupancies are refined 

then the appropriate Lagrange multipliers are written for 

each cycle. The undamped shifts and the (optional) esd's are 

written for the final cycle. 

Note that all the final esd's are actually obtained for 

the structure before the very last set of shifts were 

applied. The parameter shifts should be very small near 

convergence and thus the esd's will change little from cycle 

to cycle. 

Convergence Criteria 

It is important to develop a feel for when a structure 

has reached its final, converged state, and what to do if one 

or more of the parameters will not converge. 

For a high-order refinement of the scale and atomic 

positional and thermal parameters, the shift/esd ratio for 

all parameters in the final cycle should be less than 10~^. 

Some structures have very low (ca. 10"®) esd's and thus an 

alternate criteria is that the shifts should be less than 

10"® (10"6 is the smallest shift which is printed) in the 

last cycle. A secondary check should be that, for six 

refinement cycles, the signs of the shifts not change more 
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than twice. If this happens then the shifts should be 

damped. 

Another problem source for the high-order refinement is 

high correlation between variables. Correlations which 

exceed about 0.75 should be handled as described in Chapter 

II. 

The eigenvalue shifts should not oscillate and in the 

final refinement should have a shift/esd ratio of less than 

10"3 (the esd's are ca. 10~2). it also important that the 

eigenvalues do not leave the interval of [0,2]. If one 

eigenvalue attempts to become negative then a damping factor 

is automatically applied to all the eigenvalues for the atom 

(or to all the eigenvalues of the molecule) in question in 

order to maintain electroneutrality. In such a case the 

eigenvalue should be fixed at either 0 or 2 and the others 

allowed to vary. Later, it is wise to set the value slightly 

away from 0 or 2 (adding to or subtracting off an equal 

amount from the other eigenvalues) and allow it to vary 

again. If it still tends to leave the range [0,2] then it 

should truly be fixed. There have been cases where this 

procedure has resulted in a non-constrained value in the 

range of (0,2) even though, at an earlier stage, the 

eigenvalue attempted to leave this range. 

The values of the hydrogen atoms' shifts and esd's are 

generally larger than for the other atoms. This is due, in 
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part, to the small scattering amplitude o f  the hydrogen atom. 

Therefore the refinement criteria are less stringent, the 

hydrogen variables being considered to have converged if 

their shift/esd ratio is less than 10"2. It is often 

necessary to dampen the shifts of the hydrogen atom variables 

by a factor of two to speed convergence. 

The Atamn components need to be small in order to 

maintain orthogonality of the spectral representation 

matrices U. For this reason it has become standard practice 

to set an upper limit to the At^mn 0.10 in the initial 

stages of refinement. The limit is lowered to 0.01 in the 

later stages where oscillation tends to occur. If an 

individual Ata^n larger than the limit then all of the 

Atgmn components for the given atom are damped. When the 

parameters have converged the values of Atamn ca. 10""® 

(their esd's are ca. 10"^) and the determinant of (I+Atamn/2) 

is thus ca. 1+10"12. A quick way of checking convergence is 

to watch the determinant from one refinement to the next. If 

the Atamn limit is 0.01 and a given determinant remains at 

approximately 1+10"^ for several cycles then the shifts are 

being damped severely and it is best to relax the Atamn limit 

back to 0.10 for a few cycles to allow U to become 

approximately correct. One should also check the empirical 

shifts in U for oscillation. If oscillation exist then the 

shifts should be damped. 
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Contour Maps 

The electron density was calculated by a two-dimensional 

Fourier transform routine written specifically for this task. 

The contour maps were drawn by a program which was written as 

a companion to the Fourier transform program and uses the DI-

3000 graphics capabilities of the VAX computer. 

There are no contour values shown on the maps. However, 

the contour interval (CI) in e'/Â? is given for.each map in 

the figure title. The dimensions of the maps are in integral 

A units, and measurements are facilitated by the use of a 1Â 

bar given on each map. The 1Â bar and the molecular 

(fragment) skeleton have been drawn for ease of reference. 

When a pertinent atom lies off the plane of the map, its 

position is indicated by a large cross. The negative 

contours on each map are dashed lines, the remaining contours 

are solid lines. 

There are three basic types of contour maps. The first 

is of the observed electron density which is the Fourier 

transform of E(k). The second type is of the calculated 

(promolecule's) electron density and is the Fourier transform 

of F(k). The last type is of the difference between the 

experimental electron density and the calculated electron 

density. This last type is calculated by Fourier 

transforming E(k)-F(k). Each of these types may be for all 

the data or for a subset of the data. The F(k) may also be 
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from the entire promolecule or of some subset (e.g., the 

valence orbitale only). The various combinations of E(k) and 

F(k) permit different perspectives of the molecule to be 

seen. The figure titles indicate under which conditions the 

Fourier transform was carried out. 

Each Fourier transform runs over all the reciprocal 

lattice points. There are two exceptions to this in that the 

(0,0,0) reflection and the reflections with sin(@)/X greater 

than the limit of data collection are not included. The 

contribution of the origin reflection to electron density 

difference maps (E-F) is zero. For observed (E) maps it 

contributes only a small additive constant to the entire map. 

Two maps in Chapter IV and all of the maps in Chapter V have 

been corrected for the contribution from the origin 

reflection. 

The exclusion of data beyond the data collection sin(0)/X 

limit can have a more severe effect on the resultant electron 

density functions. This effect is called the Fourier 

truncation effect and can produce ripples in the electron 

density functions. Generally speaking, the more data which 

is excluded from the Fourier transform, the more severe the 

electron density ripples. It easy to see from this 

description that in difference electron density maps using 

data which extends beyond the "proper" high-order data 

cutoff, no ripple effect will be seen. On the other hand, 
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unless the sin(9)/X cutoff is extremely high, each observed 

electron density map will have some ripple effects due to the 

large contribution by the core electrons to the high-order 

data. 

Other Representations of the Electron Density 

During the course of this work it was found that methods 

of displaying orbital and molecular information 

simultaneously were lacking. The information consists of 

orbital occupation and, in the case of p-orbitals, the 

direction of the orbitale. Towards this end, two-dimensional 

contour maps are not entirely satisfactory, especially for 

more complex molecules. It is difficult to incorporate all 

of the valence information in a given contour map. 

Several alternative methods of showing the desired 

information have been devised. Two of the methods have 

emerged as being the most useful and utilize the molecule and 

ellipsoid drawing capabilities in 0RTEP41. 

The first method uses pseudo-atoms lying at the ends of 

unit vectors which point in the direction of one of the lobes 

of the orbitals. The pseudo-atoms are represented by spheres 

which have a cross-sectional area proportional to the 

electron occupation of that orbital. 

In order to accomplish this the atomic coordinates are 

first orthogonalized using Equation II.27a, to obtain the 
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atomic coordinates in a cartesian frame of reference. The 

coordinates of the pseudo-atoms are then obtained by adding 

the coordinates of the parent atoms to the wavefunction 

coefficients. The final list of coordinates will consist of 

all atomic positions and one pseudo-atomic position for each 

valence orbital. The thermal parameters of the atoms are set 

to an isotropic.value of 0.01 for clarity. The thermal 

parameters for the pseudo-atoms are set to the electron 

occupation of the corresponding orbital. This new set of 

atoms may be treated in a normal manner and a drawing made. 

Interpretation is accomplished as suggested in the 

description above; the directions of the orbitals are the 

same as that of the pseudo-atoms and the occupancies are 

visually interpreted as being proportional to the area of the 

circles which represent the pseudo-atoms, interpretation of 

any drawings done by ORTEP must always be tempered by the 

realization that depth queuing is used in order to enhance 

the visual representation. The exact relative sizes of the 

orbitals is therefore not always the same as the relative 

sizes of the orbital occupancies. 

While this method does yield all the desired information, 

the drawings are cluttered and the symmetry of the valence 

electron density is not readily inferred. One might wish to 

note that if two p-orbitals have equal electron occupancies 

then their direction perpendicular to the third orbital is 

irrelevant. 
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The second method does well to overcome the disadvantages 

of the first with only a small consequent loss in the 

resolution. The second method includes all of the 

information included in the first method, but an entirely 

different format is used. 

The second method again orthogonalizes the atomic 

coordinates using Equation (II.27a). The electron occupation 

numbers are then used as the magnitudes of the principal axes 

of an ellipsoid. By using this method it is readily seen 

that if two p-orbitals have equal occupation numbers then the 

ellipsoid cross section perpendicular to the third orbital is 

a circle. This argument can be extended to the case were all 

three orbitals have equal occupancy where the ellipsoid will 

be spherical. 

In order to include the orbital direction information 

relative to the molecule, the ellipsoids are first rotated so 

the the principal axes are in the directions of the orbitals. 

This is accomplished by performing a similarity transform on 

the ellipsoids. The rotation matrices used are the same as 

that needed to bring the wavefunctions , Y2, and Y3 to the 

X, y and z axes respectively. 

The calculation of this rotation matrix is eliminated by 

knowledge that the U matrix is unitary and composed of the 

three row vectors . The desired rotation matrix R performs 

the function R U=I. Since the U is unitary it is easily seen 
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that U-I and thus R-Ut-U"!. The similarity transform 

needed to rotated the principal axes of the ellipsoids to the 

orbital directions is therefore g-R N R**^ where N is a 

diagonal matrix with the electron occupancies as its 

elements. 

The ellipsoids are now placed at the positions given by 

the orthogonalized atomic coordinates and the model drawn. 

The resultant representation is much simpler to understand 

since the number of pseudo-atoms is equal to the number of 

atoms. The additional advantage of having the symmetry of 

the valence shown far outweighs the slight loss of resolution 

relative to the first method described. 
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APPENDIX F.  A SELF-CONSISTENT SEMI-EMPIRICAL 

ABSORPTION CORRECTION TECHNIQUE 

Introduct ion 

An x-ray beam, incident  upon a  s ingle  crystal ,  i s  

dif fracted by sets  of  planes  of  e lectrons  within the crystal .  

As the  x-ray beam passes  through the crystal ,  some of  the  

intensi ty  i s  transformed into  other forms of  energy.  The 

intensi ty  of  the  scattered x-rays  are  therefore  dependent ,  on 

a  macroscopic  scale ,  on the  amount  of  material  through which 

they pass ,  as  wel l  as  on the  composit ion of  the  material .  

I f  a  crystal  i s  rotated about  the  normal  to  a  given set  

of  planes  ( this  i s  termed a  *j / -scan) ,  the  variat ion in  the 

intensi ty  wi l l  depend on the  path lengths  of  the  primary and 

secondary beams through the crystal  and thus  i t  wi l l  ref lect  

the  shape of  the  crystal .  Absorption therefore  produces  a  

systematic  variat ion in  the measured intensi t ies ,  this  

systematic  ef fect  manifests  i t se l f  in  the  molecular  model  

used to  f i t  the observed intensi t ies  as  an increase  in  the  

calculated vibrat ional  parameters  in  the  direct ion which has  

the  largest  amount  of  absorpt ion.  

Numerous procedures^^ for  the  correct ion of  measured 

intensi t ies  for  absorpt ion have been put  forth.  These  

methods may be  c lass i f ied as  e i ther  analyt ic  or  empirical .  

Analyt ical  procedures  require  accurate  measurements  of  

the  crystal  dimensions  fo l lowed by a  large number of  
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computations to calculated the contribution of each volume 

element in the crystal to the total absorption. These 

procedures fail when the crystal not of an easily described 

morphology, or when glue, mother liquor, or a capillary 

surrounds the crystal. The measurements also need to be 

quite accurate. 

Empirical corrections consist of two basic approaches; 1) 

One or more *-scans are measured and used to describe the 

various directions of the crystal, 2) the structure is 

refined using isotropic vibrational parameters, the observed 

and calculated data are then compared. And the absorption is 

calculated from the systematic differences as a functions of 

crystal direction. The former approach is often difficult to 

apply due to either physical limitations of the 

diffTactometer or to low intensity of reflections at some or 

all orientations (^-values) when they are in an appropriate 

position. The latter approach yields somewhat dubious 

results due to a high correlation between the model and the 

calculated correction terms. 

The procedure described here is an empirical correction 

technique which utilizes only the symmetrically equivalent 

data, collected during routine data collection operations, to 

calculate a transmittance profile which is subsequently be 

used for absorption correction. 
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Background 

The standard semi-empirical methods56,57 employ an 

absorption surface which is obtained by experimental *-scan 

measurements and have formed the basis of a number of 

In this procedure the integrated intensities of a 

reflection near X-+90* are measured via a \|>-scan on a 

standard four-circle diffractometer. The normalized 

transmittance curve is calculated as T(*)-I(*)/[I(*)]max' and 

these transmittance values can be placed on an absolute scale 

where tt is the absorption coefficient, <T(*)> is the average 

value of T(*), and <t> is the average crystal dimension. 

The primary and secondary beam directions for each 

reflection (collected at 20, w, X, * in the w»© mode) in the 

crystal data set are projected onto the two-dimensional 

representation via 

\|/p»<j)-tan~ l (cos( x )  tan(0)] (F.2a) 

absorption correction programs^®. 

by 

T(*)-T(*) <T(*)>-1 exp(-p<t>) (F.l) 

and 

^^.*+tan-l[cos(X) tan(0)]. 

The absorption correction then takes the form 

(P.2b) 

I°(*p,s)=I(*p,s) T-l/2(^p) T-l/2(*s) 

using the approximation^^ t=(tp+tg)/2. 

(F.3) 
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Improved results can be obtained by use of a small step 

size, and by smoothing the resulting curve. One can also 

measure several ij/-scans at different 0 values (i.e., create 

multiple two-dimensional representations, one for each 6 

range) and interpolate between the results, yielding a pseudo 

three-dimensional correction. An alternative method of 

adding a third-dimension i$ to use the geometric 

approximation t( 3.(jim)-t( 2-dim)/cos( 0). 

This approach is relatively easy to apply and is 

appropriate even when the crystal is placed in a glass 

capillary with mother liquor or has a shape which would be 

difficult to describe with high precision. However, it does 

require that a reflection of at least moderate intensity be 

available at or near *=90° and may not be feasible on, for 

example, a three-circle difftactometer. 

Therefore an alternate procedure was devised which yields 

a calculated T(i|/) curve(s) from the measurement of symmetry 

equivalent intensities in all crystal systems except 

triclinic. (This has the additional advantage of providing 

redundant data which can subsequently be averaged.) 

Details of the Method 

Using Equations (F.2), each absorption-corrected 

intensity is first written in the form of Equation (F.3). 

Except for statistical fluctuations, all pairs of 

reflections in a symmetry equivalent group (denoted by Ig and 
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Ig) should be equal after application of Equation (F.3); 

hence 

Ig(*p,s) T-V2(^p) T-l/2(*s). 

Ig'(*p,s) T-l/2(*;). {P.4) 

Provided the variation in //t is not large for the model 

in the various \p directions, one may write 

T-l/2(*p) T-l/2(*s) = [T-l(*p)+T-l(*g)]/2 (F.5) 

and, carrying the approximation one step further, may rewrite 

Equation (F.4) as 

Igl Ti'l-Igj Tj-1 (F.6) 

where 1 and j denote the various combinations of the values 

for all pairs of reflections in g. 

For practical purposes, T(*) is assumed to be adequately 

represented by N discrete values, 1=1...N (typically 18 

Intervals from \</»0 to 180" are used). 

N sets of linear equations are then written by selecting 

those symmetry equivalent groups where one reflection in each 

group falls in the 1^^ interval, viz; 

Igi-Igj Tji, where Tj^-Tl/Tj. (F.7) 

Minimization of the error function in the standard least-

mean-square fashion leads to the normal equation 

Sg Igj Wg Igi Tj^=Zg Igl Wg Igi, (F.8) 

the solution of which yields a transmittance curve normalized 

to Ti. 

The solution of Equation (F.8) for each yields N curves 

(one for each value of ) which are averaged after 
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renormalizat lon.  Individual  contribut ions  to  the average are  

discarded i f  

|<Tji>-Tji|>Y *<Tji> (typically Y-6.0). The transmittance 

curve is placed on an absolute scale by application of 

Equation (F.l) and absorption correction takes the form of 

Equation (F.3). 

The approximation given in  Equation (F.5) tends to  

produce an overal l  damping in  the  ampli tude of  the  calculated 

^^scan.  I t  i s  poss ible  to  correct  for  this  ef fect  by 

recalculat ing each point  in  the normalized transmittance 

curve us ing the equation Tji '=4 (Tj i )2  [ l+Tji ] -2 .  

Appl icat ion 

Optimum conditions for use of this method are essentially 

identical to that for the normal empirical absorption 

correction; 1) the crystal should be mounted such that the 

longest crystal direction is along the phi axis, 2) fjR should 

not be too large, 3) the crystal should possess a relatively 

constant cross-section, and 4) the absorption coefficient and 

the average crystal cross-sectional dimension should be known 

or be approximated; in addition at least some symmetry 

equivalent data must be collected. 

After  correct ion for  Lorentz-polarizat ion,  decay,  and 

spherical  absorpt ion,  the  data are  separated into  their  

symmetry equivalent  groups and the  values  of  \p are 

calculated.  Ref lect ions  are  omitted i f ;  1) <I><X a<I> 
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where X is nominally 3.0, 2) there exists only 1 reflection 

in the group, or 3) if the ^ for all the reflections in the 

group are identical. 

The transmittance curve is calculated following the 

procedure described in the previous section. All data are 

then corrected for absorption and averaged. 

A 6-dependence can also be obtained, provided a 

sufficient amount of data exist, by dividing the data into 

divisions in 6 and calculating separate curves for each 

division. 

Results  and Discuss ion 

Application of this procedure to experimental data from 

crystal belonging to various crystal systems show 

improvements in the internal agreement factor (Rmt" 

Z |F-<F>|/<F>) ranging from 7 to 35%. The results are 

summarized in Table F.l. A typical transmission profile is 

illustrated in Figure F.l. 

Experience shows that, for those cases where experimental 

*-scan curves have also been measured, comparable 

improvements were obtained using either approach and the 

curves calculated by the method reported here reproduce the 

general features of the experimentally measured *-scan 

curves. 

The curve in  Figure F. l  indicates  a  lower sensi t iv i ty  
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Figure F.l. Calculated and observed T-scans for Compound III 
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Table F.l. Comparison of data averaging results using; (A) 
no absorption correction and (B)& the calculated 
transmittance profile 

Compound^ 
Crystal 
System lÂr (B) 

% 
Improvement 

I monoclinic 4.84 4.49 7.2 
II orthorhombic 6.23 4.05 35.0 
III hexagonal 2.21 1.73 21.7 
IV rhombohedral 5.87 4.55 22.5 
V cubic 2.97 1.96 34.0 

*All calculated curves used a maximum of *-*-15* and were 
smoothed using a three-point-averaging procedure. 

^Structural information: 
I; p(MoKa)"2.0, 2198 obsvd, 1057 avgd, Tmax/Tmin-100/84, 

878 rflxns used in calculations. 
II: p(MoKa)"0.56, 1142 obsvd, 595 avgd, Tmax/Tmin-100/75, 

164 rflxns used in calculations. 
Ill: p(MoKa)-150.0, 1506 obsvd, 197 avgd, Tmax/Tmin-82/62, 

455 rflxns used in calculations, 3 calcd curves, 
*Int(@*P' 3 curves)"1.78. For these calculations the 
symmetry was assumed to be hexagonal; because of small 
distortions, the true symmetry is orthorhombic. 

IV; //(HoKa)«0.93, 3392 obsvd, 596 avgd, Tmax/Tmin-100/90, 
1617 rflxns used in calculations. 

V; //(MoKa)-52.5, 804 obsvd, 177 avgd, Tmax/Tmin-46/34, 363 
rflxns used in calculations, Rj„t.(exp,3 curves)>*2.00. 

to sharp fluctuations and an overall damping of the 

amplitude. These effects have two possible sources; the 

first is that the calculated curve represents an average over 

(parts of) many *-scan curves and the second is the 

approximation used in obtaining Equation (F.6). 

Insight into the latter effect is gained by examinat ion 

of the equations used. Examination of Equations (F.2) 
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reveals that, in certain regimes, it can smooth the resultant 

curve. In ideal cases i|/p and rf/g are identical; for 

reflections where they differ significantly, use of the 

approximation t"(tp+tg)/2 causes an averaging over different 

directions in the crystal and can cause a general damping of 

the profile to occur. This can, in more extreme cases of 

morphological asymmetry, produce shifts in the extrema of the 

transmittance profile. This effect is diminished when only 

those reflections with small values of tan~^[cos(x) tan(e)] 

are used. 

Conclusion 

In general the results are very good. The calculated 

curves fits the major features of the experimental curves 

well and improvement in the internal agreement factors are 

noted. 

The cases where this method gives unsatisfactory results 

are those for which the x-ray intensity data are of dubious 

quality and Rmf with no absorption correction done, is 

abnormally high (above 5 to 6%). The cases where the 

procedure did not work are those in which not enough symmetry 

equivalent data were collected to perform a least-squares 

fit. 
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